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ABSTRACT. In this supplement, we provide proofs for Propositions 1 and 2 in the paper.

1. PROOF OF PROPOSITION 1

We first consider the matrix A,. Without loss of generality, we consider the (1, 1)-element of

Ay, say ALY Also we assume E [z1;] = 0 to simplify the presentation. By inserting the markup

formula in (4) of the main paper, we can decompose
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For 71, Assumptions Q (ii) and S (i) and the law of large numbers imply
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For T5, observe that
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for some C7 > 0, where the inequality follows the assumption that zj; and MC; have the
finite fourth moments, and the last equality follows from Assumption S (ii). Thus, Chebyshev’s
inequality implies T = Op(1). For T, let R; = z1; ), e1(dij)u; so that T5 = n~1/23" R
Note that E[R;] = 0,
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Thus, we have
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for some Cy > 0, where the last equality follows from Assumption S (ii). Now Chebyshev’s
inequality implies T3 = O,(1). Combining these results, we obtain ALY = Op(1).
We next consider the vector b,. Without loss of generality, we consider the first element of

by, say

Z 21U + Z 21y =: Ty + T5.

For Ty, the i.i.d. and finite fourth moments abbumptlons guarantees
Z ZE 21321 UiUj] = ZE 2l =0().
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Thus, Ty is Op(1). For T, note that E[T2] = 13" | > j=1 Elz1iz1ymir;] by the ii.d. assumption,

and thus we have
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for some C3,Cy > 0, where the first inequality follows from the Cauchy-Schwarz inequal-

ity and finite fourth moments assumption, the third inequality follows from ;2 L1 lael <



ZZ.;L”H Cst= < C5L22* for some C5 > 0 by using Assumption S (iii), and the last equal-
ity follows from Assumption S (i). Thus, Chebyshev’s inequality implies T5 = O,(v/nL:™).
W) = Op(max{1, /aLL™}).

Combining these results, we obtain by =

2. PROOF OF PROPOSITION 2

Let Amax(A) and Apin(A) be the maximum and minimum eigenvalues of a matrix A, respec-
tively. It is sufficient to show that Pr{(f — 0)'(d — 0) < M} — 0 for each M > 0. Take any

M > 0. Note that
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where the last equality follows from
1
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for any invertible matrix A. Thus, we have
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where the third inequality follows from the assumption Amax(AnA4l) < C, w.p.a.l, and the
last inequality follows from Markov’s inequality. By using the definition b,, = # oz =
ﬁ oy zi(ri + u;), we can decompose
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For T3, similar arguments to (1) in the proof of Proposition 1 yield
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where the inequality follows from the Cauchy-Schwarz inequality and finite fourth moments
assumption, and the second equality follows from Assumptions S (i) and (iii).
For Ty, the i.i.d. assumption and Cauchy-Schwarz inequality imply

Ty = =3 Blzd] < VEI Bl = 0(1).
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For T3, observe that
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for some C7 > 0, where the second equality follows from E[z}zju;] = Efzju;] = 0, the first

inequality follows from the Cauchy-Schwarz inequality and finite fourth moments assumption,
and the last equality follows from Assumptions S (i) and (iii).
Combining these results, E[b],b,] = O(nL2~?}), and thus

Pr{(6 —0) (6 —0) < M} < O(nL22/C,,).
Therefore, the conclusion follows by the assumption nL?L_ZA /Cpn — 0.
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