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Abstract. We study the problem of weak instruments in demand estimation of spatial price

competition models by Pinkse, Slade, and Brett (2002) (hereafter, PSB). Demand and cost

factors are employed as price instruments in empirical applications of PSB’s method. However,

demand factors have correlation with prices through the markup. Hence, we would expect

that these lose their identification power as the number of product grows in analogy with

Armstrong (2016) who studied random coefficient discrete choice models. The conventional

weak instruments asymptotic analysis is not applicable in PSB’s model because it requires series

estimation in their semiparametric two-stage least square estimator so that both the numbers of

endogenous regressors and instruments grow as the number of products grows. We provide two

asymptotic results that indicate lack of consistency of PSB’s estimator due to weak instruments.

1. Introduction

Economists commonly utilize instruments to solve the simultaneity problem in demand es-
timation. A discrete choice approach for differentiated product markets proposed by Berry,
Levinsohn, and Pakes (1995) (hereafter, BLP) is a popular choice to overcome this issue. In
BLP’s framework, product characteristics are frequently used as price instruments as they corre-
late with prices through the markup, especially through the market share of each product. Such
instruments are called BLP instruments in the literature. However, Armstrong (2016) showed
that under the large market asymptotics, where share of each product decays fast enough as
the number of products grows, BLP instruments may lose their identifying power and lead to
inconsistent estimators.

This paper studies a weak instrument problem in demand estimation for spatial price com-
petition models by Pinkse, Slade, and Brett (2002) (hereafter, PSB) where demand and cost
variables, possibly including BLP instruments, are employed as price instruments. In PSB’s
model, consumer demands are in a product space, not in a product characteristic space, and
they can consume more than one good. Since BLP takes a random coefficient discrete choice
approach, the demand model of PSB is considerably different from that of BLP. However, by
rewriting the markup formula induced by the Bertrand equilibrium play, one can see that this
formula is a function of the demand function of each product instead of the market share in
BLP. Since the market size is considered to be finite in PSB’s setup, we expect that the demand
function collapses to zero as the number of products grows. Therefore, the demand instruments
in PSB interact with price in a similar way to BLP.

The authors are grateful to an anonymous reviewer for substantial comments to improve the paper.
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To clarify this point, we investigate PSB’s semiparametric two-stage least squares estimator θ̂
whose estimation error θ̂ − θ is characterized as(

1√
n

n∑
i=1

ziw
′
i

)−1(
1√
n

n∑
i=1

zivi

)
=: A−1n bn,

where zi, wi, vi are vectors of instruments, regressors containing series expansion terms and
exogenous variables, and regression and approximation errors, respectively. Notice that we can-
not apply the conventional weak instruments asymptotics in Staiger and Stock (1997) since the
dimensions of An and bn are growing. Our first result characterizes the stochastic orders of each
element of An and bn. We find that these are not degenerate, and bn may diverge if the number
of expansion terms grows at a slower rate. Our second result provides an inconsistency result of
θ̂ given a high-level assumption on the maximum eigenvalue of A′nAn.

PSB’s estimation strategy requires a more demanding dataset than BLP’s one because PSB
estimate the first-order condition of the Bertrand game directly, so cost variables need to be
available. In the literature of applications of PSB’s method, researchers often employ demand
instruments in addition to cost variables to improve identification power (e.g., Pinkse and Slade
2004; Slade 2004; Rojas 2008; Fell and Heynie 2013). It should be noted that including one
weak instrument is enough to cause the weak identification problem (Staiger and Stock, 1997).
Our analysis alerts that adding demand instruments could deteriorate the identification power
against the econometrician’s intention.1

2. Model and estimator

Our model follows that of PSB. There are n sellers of a differentiated product. For simplicity,
we assume that each firm sells one product. Let qi and pi be the demand and price for product
i ∈ {1, . . . , n}, and yi be a vector of i’s product characteristics. The demand function for product
i is given by

qi(p, y) = ai +
n∑
j=1

(bijpj + c′ijyj),

where p = (p1, . . . , pn)
′, y = (y1, . . . , yn)

′, and ({ai}, {bij}, {cij}) are parameters to be estimated.
Suppose firms play the Bertrand pricing game given rival prices, i.e., firm i chooses pi to solve

max
pi

(pi − γMCi)qi(p, y)− Fi, (1)

where MCi and Fi are firm i’s marginal and fixed costs. The best response function of firm i is

pi = −
1

2βii

ai − biiγMCi +
∑
j 6=i

bijpj +

n∑
j=1

c′ijyj

 .

PSB estimated this best response function by employing a semiparametric approach. For
example, as components of yi, PSB chose the growth rate of GNP, deviation of regional from
overall growth, city population, and/or per capita income for their empirical analysis of the

1In other words, if cost variables are sufficient to identify the parameters, and demand factors are not included
in the set of instruments, then the weak instruments problem does not occur.
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spatial competition in U.S. wholesale gasoline markets. Let xi be a dx-vector of MCi, finite
subset of {yj}j 6=i, and other exogenous demand and cost variables. Also let {e`(·)} be a sequence
of basis functions, {dij} be measures of proximity of firms i and j, and ψ̃i` =

∑
j 6=i e`(dij)pj .

Based on this notation, PSB’s semiparametric model is written as

pi =
∞∑
`=1

α̃`ψ̃i` + x′iβ + ui = ψ′iα+ x′iβ + vi, (2)

where vi = ri + ui, ri =
∑∞

`=Ln+1 α̃`ψ̃i`, α = (α̃1, . . . , α̃Ln)
′, and

ψi =

∑
j 6=i

e1(dij)pj ,
∑
j 6=i

e2(dij)pj , . . . ,
∑
j 6=i

eLn(dij)pj

′ .
The number of endogenous regressors Ln grows with n. Letting wi = (ψ′i, x

′
i)
′ and θ = (α′, β′)′,

this model can be concisely written as pi = w′iθ + vi.
For this model, PSB proposed to estimate θ by the (semiparametric) two-stage least squares

based on Kn-dimensional vector of instruments zi. To deal with the endogeneity of other prod-
ucts’ prices {pj}j 6=i in ψi, we employ a demand factor, say yDj , in xj as an instrument for pj .2

To simplify the presentation, we focus on the just-identified case, so let zi = g({yDj }j 6=i, xi) be a
Kn-dimensional vector-valued function with Kn = Ln + dx given a function g.3 For simplicity,
cost shifters in xj are not included in instruments for pj , but the following results are valid if
those are also included in zi. Then the semiparametric instrumental variable estimator for θ is
written as

θ̂ =

(
n∑
i=1

ziw
′
i

)−1 n∑
i=1

zipi. (3)

This paper is concerned with the limiting behaviors of θ̂ when the number of products n
increases to infinity under suitable conditions for the price competition models. To achieve
consistency of θ̂, it is critical to guarantee sufficiently strong correlations between pj and yDj

generating the instruments zi. To understand the nature of the problem, observe that the first-
order condition of (1) can be written as

pj = γMCj −
qj(p, y)

bjj
+ uj . (4)

Thus we need to guarantee sufficiently strong correlation between the instruments zi = g({yDj }j 6=i, xi)
and markup qj(p, y)/bjj . However, in the current setup, it is common to assume that the market
size is finite, i.e., limn→∞

∑n
i=1 qi(p, y) < ∞, which implies that qj(p, y) decays to zero as the

number of products n grows. Therefore, the markup qj(p, y)/bjj may not have enough varia-
tions to yield enough correlations with the instruments zi = g({yDj }j 6=i, xi). This phenomenon is

2PSB used population and income as price instruments for their empirical application, which are considered to
be demand factors.
3For example, since

∑
j 6=i e`(dij)pj , ` = 1, . . . , Ln need to be instrumented, a (Ln + dx)× 1 vector∑

j 6=i

e1(dij)y
D
j , . . . ,

∑
j 6=i

eLn(dij)y
D
j , xi

′

is a natural candidate for zi.
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thoroughly studied in Armstrong (2016) for the BLP model on differentiated product demands.
Indeed he conjectured emergence of such a weak instruments problem in the PSB model (see, p.
1964 of Armstrong, 2016), and we verify his conjecture.

It should be noted that in contrast to BLP’s setup, however, the cost variables contained in
MCj are observable in PSB’s setup, and such cost variables are immune to the weak instruments
problem in the above sense. Our caution on the weak instruments problem applies when the
researcher includes a demand instrument yDj to be correlated with the markup qj(p, y)/bjj in her
list of instruments. Since such demand instruments are often employed in empirical analyses of
the PSB models (e.g., Pinkse and Slade 2004; Slade 2004; Rojas 2008; Fell and Heynie 2013),
our asymptotic analysis can be a useful guideline for empirical researchers working on spatial
price competition models.

3. Large market asymptotics

We now study asymptotic properties of the instrumental variables estimator θ̂ in (3) under
the large market asymptotics. Based on the literature, we impose the following assumptions.

Assumption Q. (i) plimn→∞
∑n

i=1 qi(y, p) <∞. (ii)
√
nmax1≤i≤n qi(y, p)/b

1
ii

p→ 0.

Assumption Q (i) says that the market size
∑n

i=1 qi(y, p) remains finite as the number of
products n diverges to infinity. This assumption implies that the demand qi(y, p) for each
product i decays to 0. Assumption Q (ii) requires that the decay rate of qi(y, p) normalized
by b1ii should be faster than n−1/2 uniformly over i. An analogous assumption is employed by
Armstrong (2016, Theorem 1) for the BLP model.

We also impose some regularity conditions on the series expansion in (2).

Assumption S. (i) sup1≤i≤n,`∈N
∑

j 6=i |e`(dij)| = O(1). (ii) max1≤i≤n
∑

j 6=i e`(dij)
2 = O(1) for

each ` ∈ N. (iii) sup`∈N |α̃``λ| <∞ for some λ > 1.

Assumptions S (i) and (iii) are also employed by PSB. Assumptions S (i) and (ii) are on the
basis functions. When the supports of {e`(d)}`∈N are finite, these assumptions require that the
number of non-zero elements of e`(dij) for i, j = 1, . . . n should be finite. If the supports of
{e`(d)}`∈N are infinite, Assumptions S (i) and (ii) require that e`(d) should decay fast enough
as d → ∞. Assumption S (iii) can be understood as a smoothness condition for the function
to be approximated by the series expansion. Intuitively, larger λ is associated with a smoother
function.

From (2) and (3), the estimation error of θ̂ can be written as

θ̂ − θ =

(
1√
n

n∑
i=1

ziw
′
i

)−1(
1√
n

n∑
i=1

zivi

)
=: A−1n bn. (5)

There are two notable features in this expression. First, the matrix An is normalized by n−1/2,
instead of n−1 for the case of the conventional instrumental variable regression with strong in-
struments. Such normalization is employed by Staiger and Stock (1997) for the weak instruments
asymptotics. As indicated in the last section, in our setup, the markup qi(p, y)/bii (and thus wi)

4



may not have enough correlations with the instruments zi, and hence we adopt the analogous
normalization. Second, in contrast to the conventional or weak instruments asymptotic analysis
in Staiger and Stock (1997), An is a Kn × Kn matrix and bn is a Kn × 1 vector so that both
components have growing dimensions. In other words, we need to deal with the problem of
weak instruments for semiparametric or series estimators, where not only the number of instru-
ments Kn but also the number of endogenous regressors Ln grow with n. Such an analysis is a
substantial challenge in the econometrics literature (see, e.g., Freyberger, 2017, and Han, 2020).

Although full development of the asymptotic theory for (5) by extending random matrix theory
is beyond the scope of this paper, we present two results to indicate lack of consistency of θ̂. The
first proposition characterizes the stochastic orders of the elements of (An, bn).

Proposition 1. Suppose {pi, xi, zi}ni=1 is an i.i.d. triangular array, where each element has the
finite fourth moments, and Assumptions Q and S hold true. Then each element of An is of order
Op(1), and each element of bn is of order Op(max{1,

√
nL1−λ

n }).

This proposition says the elements in (An, bn) do not degenerate, and bn may even diverge
when the Ln (and thus Kn) grows at a slower rate. Although this result is not enough to
characterize the stochastic order of θ̂ − θ = A−1n bn, we can observe analogous behaviors of the
corresponding terms of (An, bn) for the case of the weak instruments asymptotics in Staiger and
Stock (1997).

Additionally we provide a lack of consistency result in terms of the Euclidean norm ||θ̂ − θ||
under some high level assumption on An. Let λmax(A) be the maximum eigenvalue of a matrix
A.

Proposition 2. Suppose {pi, xi, zi}ni=1 is an i.i.d. triangular array, where each element has the
finite fourth moments, and Assumptions Q and S hold true. If λmax(AnA

′
n) ≤ Cn with probability

approaching one, and nL2−2λ
n /Cn → 0 for some Cn, then ||θ̂ − θ||

p→ +∞.

This proposition provides sufficient conditions to induce inconsistency of the estimator θ̂. The
additional condition nL2−2λ

n /Cn → 0 is analogous to Assumption (viii) in PSB (which requires
nL2−2λ

n /ζn → 0 for a sequence {ζn} associated with the minimum eigenvalue of
∑n

i=1 ziw
′
i).

In our setup, it is beyond the scope of this paper to characterize the upper bound Cn for the
maximum eigenvalue of the product matrix AnA′n with growing dimension, which requires further
developments of the random matrix theory.

To illustrate this point, suppose An is a Kn × Kn matrix of independent N(0, 1) variables.
Then Johnstone (2001, Theorem 1.1) showed

λmax(AnA
′
n)− µn

σn

d→ Tracy-Widom law of order 1,

where µn = k2n and σn = kn{(Kn − 1)−1/2 +K
−1/2
n }1/3 for kn = (Kn − 1)1/2 +K

1/2
n . Thus, in

this case, the upper bound Cn can be set as Kn. By Kn = Ln + dx, the additional condition
in Proposition 2 will be nL1−2λ

n → 0, which is satisfied when Ln grows fast enough and/or λ is
large enough.
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