OPTIMAL TREATMENT ASSIGNMENT RULES
WHEN TREATMENTS ARE LIMITED IN SUPPLY
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ABSTRACT. We study treatment assignment when treatments are limited in supply, where a planner
aims to maximize social welfare by assigning treatments based on observable covariates. Such
constraints are common when treatments are scarce and costly, but they complicate the analysis
of optimal assignment rules because assignment probabilities must be coordinated across the entire
covariate distribution. We develop a new approach that reformulates the planner’s problem as an
optimal transport problem, which makes the constraints analytically tractable. Using a limits of
experiments framework, we establish local asymptotic optimality results for two canonical decision
rules—the plug-in rule and the Bayesian rule. We show that the former rule can dominate the latter
rule, with simulations demonstrating sizable risk reductions. An empirical illustration using school

voucher program data from Angrist et al. (2006) demonstrates how the two rules differ in practice.
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1. INTRODUCTION

When a social planner allocates treatments such as school vouchers or subsidies, an important
question arises: who should be treated given available data? The planner typically does not know
the true treatment effects but can rely on observed data from experimental or observational studies.
The literature on treatment assignment problems has examined how to use available data to design
treatment assignment rules that maximize social welfare (e.g., Manski, 2004; Stoye, 2009; Hirano
and Porter, 2009). While this literature has made substantial progress, much less is known about
how to design optimal rules when treatments are limited in supply. In many real-world settings,
treatment assignment is subject to such constraints—budgets, supplies, or available slots are limited,
so not everyone who could benefit can be treated.

This paper extends Hirano and Porter (2009) to derive optimal rules when treatments are limited
in supply. To accommodate these constraints, we reformulate the planner’s problem as an optimal

transport problem, and establish locally asymptotically optimal assignment rules—results that, to
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our knowledge, have not yet been formally derived in the literature. The framework also naturally
extends to settings with non-binary treatments.

At first glance, one might think that the constrained problem is only a straightforward extension
of the setting without constraints on available treatments—simply add a quota. Since Hirano and
Porter (2009) show that assigning treatment to individuals with (efficiently) estimated positive
effects is locally asymptotically optimal when there are no constraints on available treatments, it
is tempting to conclude that ranking individuals by their estimated effects and treating them in
descending order until the quota is filled would also be optimal. While this intuition turns out to be
correct under suitable smoothness conditions on the planner’s utility function—a result we establish
formally—it is far from straightforward to prove. The presence of capacity constraints makes the
derivation of optimal assignment rules substantially more complex, as explained below.

We consider a planner who aims to maximize social welfare by designing treatment rules based
on observable covariates, subject to a capacity constraint. Let w(6, x,t) denote the planner’s utility
from assigning treatment 7' = ¢ to an individual with covariate X = z, where # € R* characterizes
the treatment effects. For example, if w(#,z,t) is the conditional mean of the potential outcome
given (x,t), then # is a parameter indexing the conditional potential outcome distribution. Suppose
that the true parameter 6y can be efficiently estimated by an estimator 0,, constructed from ex-
perimental or observational data. For simplicity, consider a binary treatment setting where a fixed

fraction p of the population is to be treated. When 6y is known, the planner’s problem is
mgmx/ {w(0p, x,1)d(x) + w(bp,z,0)(1 —d(x))} dFx(x), s.t. / 0(x)dFx(x) = p,
X x

where Fx is the distribution of covariates and d(x) is the probability of assigning treatment to
X = z. In reality, 0y is not known to the planner. Thus the planner utilizes the available data to
design treatment assignment rules.

Under the current setup, however, we cannot simply follow a standard approach to analyzing
the asymptotically optimal data-driven rules taken by Hirano and Porter (2009) and others. This
approach first derives the optimal rule for each covariate x in an asymptotically equivalent (and
simpler) problem. It then constructs a sequence of feasible data-driven rules that asymptotically
match the optimal rule in the limit. The key is that the limiting problem becomes tractable because
the optimal rule in the limit is selected from the set of rules obtained as asymptotic representations of
data-driven rules, which only depend on random variables following a shifted normal and a uniform
distribution (van der Vaart, 1991, Theorem 3.1).

Under capacity constraints, this pointwise approach fails because the planner must coordinate
assignment probabilities across the entire covariate distribution F'x. Then, one might define the

planner’s action space as the set of (measurable) functions

Fie {5 X [0, 1] ’/X 5(2)dFy (x) =p},
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but directly working with F is inconvenient. It is difficult to obtain the asymptotic representations
of assignment rules or to solve the maximization problem because F fails to be compact under
common norms when the support of X is not finite or countable.! To proceed, we therefore need a
formulation that circumvents this technical difficulty.

Our first contribution is to achieve this by reformulating the planner’s constrained problem as
an optimal transport problem. The key observation is that, when the capacity constraint binds
exactly, the (unconditional) distribution of treatment assignments must be a Bernoulli distribution
with success probability p. The planner’s problem can then be framed as transporting the mass of
Fx into the Bernoulli distribution Frr, in a way that maximizes the social welfare. This reformulation
allows us to treat the action space as a set of couplings—joint distributions on X x {0,1} whose
marginals are F'x and Fr— equipped with the Wasserstein distance. This new action space is
a compact and convex metric space, which are convenient properties for obtaining the asymptotic
representations of assignment rules and for solving the planner’s problem. Moreover, this framework
naturally extends beyond binary treatments to general discrete or continuous settings. To our
knowledge, this is the first study to reformulate the optimal treatment assignment problem into an
optimal transport problem.

Our second contribution is to provide decision-theoretic optimality results under capacity con-
straints based on this reformulation. We employ posterior-risk minimization in the Gaussian limit
experiment as our optimality criterion. This criterion is equivalent to the standard average opti-
mality used in Hirano and Porter (2009) and Christensen et al. (2025) whenever the average risk is
well-defined, while remaining applicable even in settings where average optimality may not be.

We analyze two canonical assignment rules: the plug-in rule, replaces 6y with its efficient estimator
én, and the Bayesian rule, which forms the posteior on the parameter space © based on the observed
data. Our main results are as follows: (i) both rules are optimal in the limit experiment under
capacity constraints when the planner’s utility function is continuously differentiable, (ii) the plug-
in rule is generally suboptimal, while the Bayesian rule remains optimal when the planner’s utility
function is only directionally differentiable.

Directionally differentiable utility functions often arise in empirically relevant settings. For in-
stance, they arise when the (conditional) potential outcome distributions may differ slightly between
the target and training populations, and the planner adopts a maximin-type utility function that
is robust to such distributional shifts (Adjaho and Christensen, 2023).

Our results are consistent with the existing literature. The plug-in rule is known to be average op-
timal under point-identified models when the planner’s utility function is continuously differentiable

(Hirano and Porter, 2009), while the Bayesian rule is known to be average optimal under partially

lBy van der Vaart (1991, Theorem 3.1), F needs to be complete and separable to obtain the asymptotic representations
of assignment rules. Under the sup-norm, F is typically not separable when X is not countable. Under L,-norm;
ie, [, = (f ||” dFx (cv))l/p7 F is separable and complete, but not compact unless X’ is finite. Thus it is not
straightforward to find a suitable norm to work with F.



4 KEITA SUNADA AND KOHEI IZUMI

identified models when the planner’s utility function is directionally differentiable (Christensen et
al., 2025), where the lack of point identification similarly precludes full differentiability and renders
the plug-in rule suboptimal. While our analysis concerns a different environment by featuring capac-
ity constraints, our limit-experiment results imply the corresponding average-optimality conclusions
within our model whenever average optimality is well-defined. Thus our findings complement the
existing literature by establishing analogous optimality properties in capacity-constrained settings.

To quantify the performance gap between the two rules, we conduct a simulation study. The
results support our theoretical findings. Specifically: (i) the Bayesian rule achieves a substantially
lower risk than the plug-in rule in small samples for both continuously and directionally differentiable
utility functions, (ii) the two rules behave similarly under the continuously differentiable utility
function in larger samples, and (iii) the Bayesian rule continues to outperform the plug-in rule
under the directionally differentiable utility function in larger samples.

We illustrate our methods using data from Angrist et al. (2006), who study the impact of receiv-
ing a randomly assigned voucher—allowing students to attend private high schools—on educational
attainment seven years later. We hypothetically treat the marginal distribution of covariates (age
and sex) in the observed sample as that of the target population, and compute both the plug-in
rule and the Bayesian rule. The two rules yield identical allocations under a continuously differen-
tiable utility function but differ under the maximin-type directionally differentiable utility function

mentioned above.

1.1. Related literature. This study builds on the literature on the statistical treatment assign-
ment problems in econometrics, where the pioneering works include Manski (2004) and Dehejia
(2005). Within this expanding literature, our main contribution is to provide a decision-theoretic
optimality result under capacity constraints on available treatments. Previous studies have estab-
lished the decision-theoretic optimality of treatment rules in several settings including: (i) point-
identified smooth (semi-)parametric models under local asymptotics (Hirano and Porter, 2009;
Masten, 2023), (ii) partially-identified smooth (semi-)parametric models under local asymptotics
(Christensen et al., 2025; Kido, 2023; Xu, 2024), (iii) point-identified models with finite samples
(Stoye, 2009; Stoye, 2012; Tetenov, 2012; Guggenberger et al., 2024; Kitagawa et al., 2024; Chen
and Guggenberger, 2025), (iv) partially-identified models with finite samples (Manski, 2007; Stoye,
2012; Yata, 2023; Ishihara and Kitagawa, 2024; Aradillas Fernandez et al., 2024; Montiel Olea et al.,
2024). However, none of these studies consider the capacity constraints in the way we do. To the
best of our knowledge, this is the first study to establish an optimality result under such constraints
within the framework of Hirano and Porter (2009), extended to cover non-binary treatments—both
discrete and continuous.

Besides Hirano and Porter (2009), the most closely related paper is Christensen et al. (2025).
They extend Hirano and Porter (2009) to allow for partially identified parameters and (non-

randomized) discrete actions, and show the asymptotic optimality of the Bayesian rule. Our setting
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differs in that the action space is the set of couplings of F'x and Fr (see notation below) equipped
with the Wasserstein distance, which naturally allows for randomized assignment rules. This non-
standard action space requires nontrivial extensions to analyze the asymptotic properties of the
Bayesian rule, which we address by drawing on tools from optimal transport. In contrast to their
framework, we focus on point-identified parameters.?

There also exist studies that incorporate exogenously given constraints into the treatment assign-
ment problem. Bhattacharya and Dupas (2012) impose the capacity constraints in the way we do,
but focus on the estimation and inference of a nonparametric plug-in rule. Other papers adopting
the empirical welfare mazimization approach allow for various types of constraints, including the
capacity constraints (Kitagawa and Tetenov, 2018; Athey and Wager, 2021; Mbakop and Tabord-
Meehan, 2021; Sun, 2024). Kitagawa and Tetenov (2018) show the optimality of their proposed rule
in terms of the welfare convergence rate, which measures how quickly the average welfare achieved
by the proposed rule converges to the maximum welfare under the true data generating process.

Some recent works utilize tools from optimal transport theory in the literature of treatment as-
signment problems. Kido (2022) and Adjaho and Christensen (2023) study the external validity of
treatment choices by measuring the difference in potential outcome distributions between the train-
ing and target populations using the Wasserstein distance. Hazard and Kitagawa (2025) formulate
a learning problem of optimal matching policies in a two-sided market as an empirical optimal
transport problem, and derive a welfare regret bound for their estimated policy.

Our work also relates to the growing field of statistical methods for optimal transport problems
(Chewi et al., 2024), as we study the local asymptotic properties of transport maps of an optimal

transport problem where the cost function is indexed by parameters that can be efficiently estimated.

1.2. Structure of the paper. The remainder of the paper is organized as follows. Section 2
formulates the planner’s problem and introduces the data generating process. Section 3 introduces
the decision theoretic framework and define the plug-in rule and the Bayesian rule. Then the
optimality results are stated. Section 4 provides a simulation study to evaluate the finite sample
performance of rules. Section 5 illustrates our methods using the data from Angrist et al. (2006).

Finally, Section 6 concludes. All of the proofs are relegated to Appendix.

1.3. Notation. A function f: © C R¥ — R is (Hadamard) directionally differentiable at @y if there

is a continuous function fgo : R*¥ — R such that

o |70+ taln) = (60)

n—00 tn

- feo(h) =0

for all sequences {t,} C R, and {h,} C R¥ such that ¢, | 0, h, — h € R¥ as n — oo and
0o + tphy € O for all n. It is worth noting that this requires fgo need to be continuous, but not to

be linear.

2Xu (2024) further extends the framework of Christensen et al. (2025) to continuous decision problems using an
expansion-based approach.
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Let P and @ be Borel probability measures on A and B, respectively. A joint distribution g on
A x B is called a coupling of P and @ if its marginals are P and @; that is, u(A x B) = P(A) and
(A x B) = Q(B) for any measurable sets A and B.

2. SETTING

The setting of this paper closely follows that of Hirano and Porter (2009). We consider a social
planner who assigns a treatment 7' to individuals based on their observable covariates X. Let F'x
denote the marginal distribution of X in the target population, with support X. We assume that
Fx is known to the planner. The planner can fractionally (probabilistically) assign treatment 7" = ¢
to an individual with covariate X = z.

Let Y (t) denote potential outcomes under treatment 7' = ¢. In contrast to Hirano and Porter
(2009), we distinguish between the conditional potential outcome distribution in the target popula-
tion and in the training population. We denote the conditional distribution of Y'(¢) in the training
population as Fy(-|x, ), where Fy(-|x, ) belongs to families of distributions indexed by a parameter
6 € © C R*. The planner must learn # from the available data from experimental or observational

studies.

2.1. The planner’s preferences. The planner’s utility for assigning treatment 7" = ¢ to an indi-
vidual with covariate X = x depends on the conditional distribution Fi(-|x, ) via a functional w.

For the shorthand notation, we write
w(l,z,t) := w(F(|z,0)).

We consider two scenarios. First, w(f,z,t) is fully differentiable in 6. Second, w(0,z,t) is only

directionally differentiable in . Two examples corresponding to each scenario are given as follows.

Example 2.1. When the planner is interested in the (conditional) mean outcome, then a natural
choice of utility function is

w(l,z,t) = /det(y|x,(9).
This choice is standard in the literature and appropriate especially when the target and training

populations are assumed to have the same conditional potential outcome distribution. H

Example 2.2. When the conditional potential outcome distributions may differ slightly across the
target and training populations, the planner may wish to adopt a utility function that is robust to
distributional shifts. Following Adjaho and Christensen (2023), we formalize such a utility function.?
We first define an e-neighborhood of Fy(-|x,0) as

Ne = {Gi([2) : dw (Gi(-|), Fi(-|,0) < e},

3For alternative approaches to robust welfare, see Si et al. (2020), Kido (2022), and Qi et al. (2023).
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where € > 0 is a measure of neighborhood size, and dw is the Wasserstein distance of order 1.*
Given A € [0, 1], the planner’s utility for assigning treatment 7' = ¢ for individuals with covariate
X =z is then defined as
w(t.a.t) = [yaFle.0) + (1) int [ yaGiu).

This formulation corresponds to maxmin preferences of an ambiguity-averse decision maker (Gilboa
and Schmeidler, 1989). In the second term, since the true target distributions are unknown, the
planner computes the conditional mean under the worst-case distribution within the neighborhood
of Fy(-|z,0), treating it as a fixed reference prior on Y (¢) given z.°

By Adjaho and Christensen (2023, Remark 2.2), this utility function can be rewritten as

w0, 2,1) = )\/det(y|x, 6) + (1 — \) max {/det(y|x,9) _ 5,yg(t)} , (2.1)

where yy(t) is the possible minimum values in the support of Y (¢). From this expression, one finds
that (2.1) is only directionally differentiable, and the directional derivative of the second term of
(2.1) for direction h at @ is given by (1 — A) times

(4 J vdBu(yle,0)) b it [ ydEu(yle,0) — > yilt),
max { (§ [ 9dFiyle.0) h.0} it JydFyle.0) - £ = (o),
0 if [ydFi(ylz,0) —e <ye(t).

We note that the non-linearity of this directional derivative corresponds to the failure of the full
differentiability of (2.1) at 6. B

2.2. The planner’s problem as optimal transport. We consider a setting where the planner
faces the capacity constraints on the available treatments. To illustrate, consider a simple binary
treatment case, T' € T := {0,1}, where a fraction p of the target population is to be treated. We
assume that the capacity constraint binds exactly. Let 6(x) denote the probability of assigning
treatment T' = t to individuals with X = x. Then, under the capacity constraint, the planner’s

problem can be written as
max [ {w(b,2,1)3(2) + w(b,2,0)(1 - 6(x))} dFx (a), (2.2)

€ X

We now show how to convert this constrained optimization problem into more tractable one.
Observe that the distribution of treatment assignments must be a Bernoulli distribution with the

success probability p. With this in mind, the planner’s problem can be seen as an optimal transport

4Formally,

v (Rl Gl 0) = _int [ 1y 3l 9),

where TI(F}, G¢) denotes all couplings of F; and G. Note that dw differs from dyw defined in (2.3).

5Several recent studies incorporate non-Bayesian preferences that arise naturally in settings with set-identifiable
parameters (Giacomini and Kitagawa, 2021; Aradillas Fernandez et al., 2024; Christensen et al., 2025). Banerjee
et al. (2020) adopt maxmin preferences to study of the optimal experimental design problems.
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problem: the planner transports the mass of Fx into Frp, the Bernoulli distribution, in a way that
maximizes the social welfare.
Formally, let M, be the set of all couplings of F'x and Fr. Let d be a distance function on X x T,
and define the Wasserstein distance of order 1 as
d ()=t [ dl(0), (@, )dr (1), (0,2, (23
el (p,v)
where I'(u, v) is the set of couplings whose marginals are y and v. We focus on couplings that have

a finite first moment:
M = {,u e M,: /d((xo,to), (x,t))dp < —{—oo},

for some arbitrary (zo,tg) € X x T. Then (M, dy ) becomes a metric space, and dyy is finite on M
(Villani, 2009, Theorem 6.9). Using this setup, the original constrained problem (2.2) is equivalent
to the following:

max W, w), (2.4)

where

W (0, pn) = /

w(®,z,t)du = / / w(®, 2, t)du(t|z)dFy ().
XXT xXJT
Hence, the action space of the planner is the space of couplings (M, dy).

There are three important remarks regarding this optimal transport formulation. First, the
capacity constraint is automatically satisfied by any coupling in M, making the problem effectively
unconstrained. Second, this reformulation is computationally attractive, as one can use an existing
software for optimal transport. Finally, this approach can easily accommodate non-binary treatment
settings. We assume that T follows a distribution F7p, determined by the capacity constraints,
with support 7. We remark that du(t|z) becomes a conditional probability measure when Fr is

continuous.

2.3. The data generating process. When the true (finite-dimensional) parameter 6y is known

to the planner, the optimal rules can be obtained by solving

W (0o, 11).
max (6o, 1)

However, since the planner does not know 6y in practice, she must select a rule in a data-driven
manner. For this purpose, data Z" = (Z3,...,Z,), which are informative about 6 (and hence
about Fi(:|z,0)) are available from a training population. We assume that the data Z™ are i.i.d.
with Z; ~ Py on some space Z equipped with the Borel o-algebra B(Z). We let Pj* denote the
joint probability measure of Z™. In Appendix F, we consider an extension in which the sampling

distribution of data may depend on (possibly infinite-dimensional) nuisance parameters, as in a
GMM model.
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Example 2.3. Angrist et al. (2006) study the medium-term effects of the PACES program in
Columbia.’ Specifically, they investigate the impact of receiving a randomly assigned voucher
(which allows attendance at private schools) on educational attainment seven years later, using the
administrative data.

In one of their main specifications, they consider the following linear model:
Vi = X' B+ oT; + ui,

where Y; denotes test scores, X; includes observable covariates (sex and age), 7; is an indicator
for the treatment status, and wu; is an error term. However, not all individuals in the sample took
the exam. Because the voucher recipients were more likely to take the exam than non-recipients, a
selection issue arises. To address this, Angrist et al. (2006) construct a modified test score variable
by censoring the observed scores at a specific quantile of the test score distribution. Let R; be an
indicator for exam registration and 7 > 0 be the censoring threshold. Then the censored test score
is defined as
Yi(r) =1{R;Y; > 7} Y; + 1{R)Y; < T} T.

Under the assumptions that (i) u; is normally distributed with mean zero, and (ii) any untested
student would have scored below the threshold 7 had they taken the exam, the parameters can
be consistently estimated using a Tobit-type maximum likelihood estimator. In this context, the
parameter is § = («, 3,0), and the observed data is Z" = {(T;, X;, Yi(7)) : i =1,...,n}, where o is

the standard deviation of the error term u;. W

Following Hirano and Porter (2009) and among others, we use a local asymptotic framework
where we perturb the data-generating process around the true one. Let © be an open subset of R*
and suppose that 6y is the true parameter. Let 6,5 := 6y + h//n. We assume that the sequence
of experiments &, = {Pj : 0 € ©} satisfies differentiability in quadratic mean (DQM) at 6y: there

exists a function s : 2" — R* such that
1/2 1/2 1 1/2 2
/ [dPgo/Jrh(z) —dp,*(z) ~ 5h's(z)dpao/ ()| =o(|h|?) ash—0, (2.5)

where s is the score function associated with £1. Let I = Epy [ss].
0
The planner’s statistical treatment assignment rule (or just rule) u: 2™ — M maps realizations
of data into the coupling. Let
Ap := argmax W (6,
0 gue X (6o, 1)

be the set of couplings that maximize the welfare at . We define the class of sequences of rules by
n h n n
D= {{un} : pn(Z") % Qo and Vg, (1n(Z2") ¢ Ag) -0 VhERE VI €O},  (26)

h e . .
where ~> denotes convergence in distribution along Fj' =~ with 2" ~ B | for each n, and Qg, 5 is a

(possibly degenerate) probability measure on M. For technical reasons, we restrict our analysis to

6PACES stands for Programa de Ampliacién de Cobertura de la Educacién Secundaria.
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rules satisfying /nPg! (un(Z") ¢ Ag) — 0, a condition also imposed by Christensen et al. (2025).
This condition ensures that the treatment rule maximizes the welfare at the true parameter 6y with
high probability in a neighborhood of 6, and that the probability of selecting a suboptimal coupling
(i.e., un & Ap) vanishes sufficiently fast.

Since (M, dyy) is compact (and thus complete and separable) by Villani (2009, Remark 6.19), we

obtain the following asymptotic representation theorem by van der Vaart (1991, Theorem 3.1).

Proposition 2.4. Let {u,} € D satisfy pn & Qoo.n for all h € R¥ and 0y € ©. Under Assumption
3.1 (i)-(iii) below, there exists oo : RF x [0,1] — M such that for every h € R¥, L, (poo (A, U)) =
Qoohs L1 (A) = N(h,IyY), and L,(U) = Unif[0, 1] with U 1L A.

This proposition states that any sequence {u,} in D can be matched by some treatment rule
loo IN & limit experiment where we observe a single draw A from a shifted normal distribution
and an independent uniform random variable U. This representation is useful for analyzing the
asymptotic properties of rules, as the limit experiment is more analytically tractable than the

original experiments &,.

Remark 2.5. Hirano and Porter (2009) study the optimality of treatment assignment rules after
conditioning on a fixed covariate value X = z. In our notation, this is equivalent to finding an
optimal conditional probability u(-|x) for each x. Accordingly, they derive the asymptotic represen-
tation of p(-|z) as a function of Z™ by applying a version of the representation theorem (see their
Proposition 3.1). However, because it is difficult to accommodate the capacity constraints within
this framework, we instead apply the representation theorem to couplings u € M. Note that in our

setup, the map Z" — u(Z") takes values in M, rather than the unit interval.

3. OPTIMAL DECISIONS

3.1. Decision theoretic framework and rules. We begin by introducing a decision theoretic
framework to evaluate the performance of a sequence of rules {u,} € D. For each parameter value
0, let

Wia(0) = max W(6, i)

denote the maximum attainable welfare, and let wg,(x,t;h) denote the directional derivative of
w(f,x,t) at Oy in direction h.

In the literature on locally asymptotically optimal treatment rules, decision rules are typically
evaluated by integrating the local risk over perturbations of the parameter. One example of such a

criterion is

inf /1' inf /IR (i, O )dh, 3.1
it limin VR, Oni) (3.1)

where

R(p,0) := Epp Wiy (0) = W(0, u(2"))] (3.2)
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is the welfare-regret risk associated with the decision rule Z" — u(Z") € M at 6. This average-
optimality criterion is similar in spirit to the one employed by Christensen et al. (2025), whereas
Hirano and Porter (2009) and Xu (2024) consider a related formulation in which the integration
over h is weighted by a prior density.

A major difficulty with the classical average-risk criterion is that

/ lim inf /nR(tr, Onp)dh
R

E Nn—oo

may be infinite for every sequence {p,} € D. This can occur because wg,(z,t; h) may grow too
quickly for the integrand to be integrable.

To obtain an optimality notion that is always well-defined, we turn to the Gaussian limit exper-
iment. By Proposition 2.4, any {u,(Z™)} € D is matched by some coupling piso(A,U) in the limit
experiment. Motivated by this representation, we evaluate rules through their induced decisions in

the Gaussian shift experiment.
Definition 3.1. A sequence {u,} € D is said to be optimal in the limit experiment if, for each
fixed h € RF, it converges in distribution along Pyl to a coupling fie that solves

in Loo(u, A 3.3
min (1, A) (3.3)

for any realization of signal A ~ N (h, I, 1), where the limiting loss is defined by
Loo(p, A) := / {Wj{/l’o[h] — /wgo(x,t;h)du} dAN(A, I Y (h),

and Wj,ho(h) = max,enm [ Wo,(x,t; h)dp denotes the Hadamard directional derivative of W3}, at
6.7

The distribution N (A, Iy 1) corresponds to the posterior distribution of the local parameter h
in the Gaussian shift experiment under a flat prior. Thus L. (u, A) is interpreted as the limiting
posterior risk of choosing coupling p upon observing signal A.

We next formalize the relationship between the classical average-risk criterion and optimality in
the limit experiment.

In Theorem 3.2 below, we show the following: If a sequence {y} € D is average optimal (i.e.,
attains the infimum of the average risk) if {y} is matched by some coupling p’, in the limit
experiment such that u’, solves

win [ [ [Wiaolt) = [ iu, (ot 1)du| an (h, 251 @)an
Because the integrand is nonnegative, we may exchange the order of integration. Doing so yields an
optimization problem that coincides exactly with the limit-experiment optimality condition (3.3).
This connection is standard in local asymptotic decision theory: Hirano and Porter (2009) use an

argument that minimizing posterior risk in the Gaussian limit experiment yields average optimality,

"The existence of the derivative Wii.0(h) is formally shown in Lemma C.1.
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and the subsequent literature adopts arguments that are, in essence, solving the corresponding limit-
experiment problem. Our analysis demonstrates that this classical connection continues to hold even
in our non-standard action space—the space of couplings (M, dyy) arising from capacity constraints
and the optimal-transport formulation of the planner’s problem.

In contrast to the classical average-optimality criterion, the limit-experiment optimality criterion
is always well-defined, and characterizes exactly the condition that any average-optimal rule would
have to satisfy if the classical criterion were finite. Thus, even when the average risk is not well-
defined, optimality in the limit experiment provides a sharp and meaningful approximation to the

notion of average optimality.

3.2. A connection between the limit-experiment optimality and average optimality.
We first provide the formal statement of the theorem mentioned above. As in Clarke and Barron
(1990) and Christensen et al. (2025), we say that a family P is locally quadratic if for any 6y € O,
Dx1,(po || por) < 2(0—0")TIo(0 —6) holds for any § and ¢’ belonging to a neighborhood of 6y, where
Dx1.(po || per) is the Kullback-Leibler divergence with respect to a common dominating measure v.
Also, we say P is sound if weak convergence of Py to Py is equivalent to the convergence of 6 to ¢’

for probability measures Py, Py and parameters 6,60’ € ©.

Assumption 3.1. (i) © is open. (i) P is DQM at any 60y. (iii) Iy is finite and nonsingular at any
Oo. (iv) P is locally quadratic. (v) P is sound.

The first three conditions are standard assumptions in local asymptotic frameworks. Conditions
(iv) and (v) ensure that Schwartz’s theorem—which originally establishes posterior consistency in a
space of density functions (see, for example, Ghosh and Ramamoorthi (2003) and Ghosal and van der
Vaart (2017))—can be applied in a parametrized setting, as in Clarke and Barron (1990). We impose
these assumptions to show that the Bayesian rule {u2} satisfies Vnbg (ME(Z") ¢ Ao) — 0. The

same conditions are also imposed by Christensen et al. (2025).

Assumption 3.2. X x T is compact in the product metric space where the distance function d is

equipped.

For example, this condition is satisfied if X is a compact metric space, and 7T is a finite discrete

space.

Assumption 3.3. (i) w(0,x,t) is bounded continuous on © for any (z,t) € X x T. (ii) w(0,z,t)

s continuous on X X T uniformly over ©.

Note that discrete covariates are compatible with condition (ii), since the metric d can be defined

to incorporate the discrete metric.
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Assumption 3.4. (i) w(0,-) is directionally differentiable (as a function on X x T ) at any 0 €
© with derivative .5 (i) e, (x,t;h) is continuous on X x T for any h. (iii) e, (-;h) is
uniformly dominated by a function K(h) that grows at most subpolynomially of order p; i.e.,
max (g nexx7 |Wo (2,1 h)| < K(h) <1+ ||h".

Condition (i) imposes a uniform version of directional differentiability, rather than requiring it
only pointwise in (z,t). For condition (iii), a similar polynomial growth condition appears in the
study of Bayes estimators (van der Vaart, 1998, Section 10.3). Choosing p = 1 is sufficient for (2.1)
provided max(, y)exx T H% J ydFi(y|z, GO)H < 00. Condiion (ii) is not used in the next result, but

used in Theorem 3.5.

Assumption 3.5. (i) The prior (Lebesgue) density function 7 is positive, continuous, and bounded

on O. (i) [||0]|F d=(8) < cc.

The order p used in condition (ii) must align with the order in Assumption 3.4 (iii). Condiion

(ii) is not used in the next result, but used in Theorem 3.5.

Theorem 3.2. Let {u,} € D be any sequence of decision rules that is matched by poo in the limit
experiment. Under Assumptions 3.1-3.5, {u,} € D is average optimal if, for each fized h € RF,
Poo(A) € argmingea, Loo(p, A) for any realization of the signal A ~ N(h,I;"), whenever the

average optimality is well-defined.

Proof. See Appendix A. d

This result shows that limit-experiment optimality characterizes classical average optimality
whenever the global average risk is finite.

In the following subsections, we investigate two canonical assignment rules to check whether they
are optimal in the limit experiment. The first rule is the plug-in rule {u% (Z™)}, defined for each n
by

1 (27) € arg max W (0, 1),

where 0, is a best reqular estimator of 6y such that
V0, — 0,p) &, N(,I;") asn — oco.

The maximum likelihood estimator or the Bayesian posterior mean estimator are typical examples
of best regular estimators. From the arguments of Hirano and Porter (2009), such a plug-in rule
is shown to be optimal in the limit experiment in binary treatments setup without constraints on

available treatments.

8That is, for any 7, | 0 and h,, — h,

max w(@o +r”h"7m’t) _w(0071‘7t) —'U.JG()(‘rvt; h’) - 0
(x,t)EXXT Tn




14 KEITA SUNADA AND KOHEI IZUMI

The second rule is the Bayesian rule {2 (Z™)}, defined for each n by
uB(zm) € arg max/ W (8, u)m, (0| Z2™)d6,
HEM JoO

where 7, (0| Z™) is the posterior density obtained from a strictly positive, continuous prior density 7
on ©. From the arguments of Christensen et al. (2025), such a Bayesian rule is shown to be optimal
in the limit experiments in discrete choice problems when (i) the model is partially identified, and

(ii) decision rules are not fractional.

3.3. Asymptotic behavior of the Bayesian rule. To state an optimality result for the Bayesian

rule {12}, we additionally impose the following condition.

Assumption 3.6. There exists K such that for all (p,v) € Ag x (M \ Ag), W(bp, ) > K >
W(eo,lj).

Note that W (6o, p) is constant over Ag. This condition requires that the value of W(6p,-) is
uniformly separated between Ag and M \ Ag. The requirement arises because M is infinite; it is
unnecessary when the action space is finite. To see an implication from this condition, note that
the correspondence A(f) := argmax,cy W (0, 1) is upper hemicontinuous at 6y by the theorem
of maximum of Berge. From this observation, one can show that Assumption 3.6 implies that for
sufficiently small ¢ > 0 we have that A(6) = Ao for all § € N.(6p), which means that A(0) is
invariant around the neighborhood of 6.

It should be noted that the Bayesian rule {2} may not be uniquely determined as our framework
allows for multiple maximizers of the objective function. This non-uniqueness complicates the
analysis since we cannot directly apply the argmax theorem, which is often used to study the
asymptotic behavior of general argmax-functionals.

To deal with this, we utilize a penalized version of the Bayesian rule. Let v € M be any fixed
reference measure and X : M — R be a functional given by u — (dyw (1, v))?, which will serve as
a penalty function of a maximization problem. For example, we can let v be the product measure

of Fx and Fp. The functional A has following properties:

Proposition 3.3. H is a nonnegative, continuous, strictly convexr, and bounded functional on

(M, dw).

Proof. See Appendix D. O

Then we define the penalized Bayesian rule by

pllo(2) = argmax [ W (0, p)m(6]2)d0 — < H (),
o
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for € > 0. Note that ,uf’ . becomes the unique maximizer of this penalized problem by the strict
convexity of H. We then obtain a useful result on the penalized rules {,ufi -} by following the
arguments of Nutz (2022).°

Proposition 3.4. Let Mgy (2) := argmax,cnm [ VaW (0, p)mn(0|2)dl. For each z € Z", there
exists a unique pf(z) € M such that (i) pf_(z) converges weakly to p5(z) ase | 0, (ii) pf(z) €
Mopt(2), and (iii) p)} (2) = argminge ar,,, () H (1)

Proof. See Appendix E. O

Thus, we can construct a unique sequence {z?} by defining 12 (2) as the minimizer of the penalty
function H over Moy (z). All results on the Bayesian rule below are stated for the sequence {15}

constructed in this way.
Theorem 3.5. Under Assumptions 3.1-3.6, {uB} is optimal in the limit experiment.
Proof. See Appendix B. d

Remark 3.6. Formally, the construction of {2} depends on the choice of a prior distribution.

However, any prior satisfying Assumption 3.5 leads to the same conclusion.

Remark 3.7. {2} remains optimal in the limit experiment if the directional differentiability in

Assumption 3.4 is strengthened to the full differentiability.

Remark 3.8. Christensen et al. (2025) impose a condition called no first-order ties, which requires
the uniqueness of the minimizer of the loss function in the limit experiment. This condition addresses
an indeterminacy: their treatment rule must be matched to one of the minimizers, but it is not
uniquely determined without this condition. By contrast, our construction of the rule {u2(Z")}
allows us to avoid imposing this condition, since u?(z) is matched with u*, in the limit experiment

where p*_ uniquely maximizes the penalty function H over the set of minimizers of Lo (p, A).1°

3.4. Asymptotic behavior of the plug-in rule.

3.4.1. When w is directionally differentiable. From the definition of the limit-experiment optimality,

it is easy to see that any matched rule must solve

max / [ / g, (2, ; h)du} AN(A, T H)(h). (3.4)

HEAQ

INutz (2022) provides corresponding results by choosing H as the Kullback-Leibler (KL) information criterion between
1 € M and any reference measure in M. KL is nonnegative and strictly convex in y, but not continuous and bounded.
Here we impose stronger requirements for the penalty function H, which is needed to handle weak convergence of
functionals on M to study the asymptotic properties of rules. Accordingly, the mode of convergence of /,LE’E(Z) is
modified to weak convergence from convergence in total variation, see Nutz (2022, Theorem 5.5).

10xy (2024) assumes uniqueness of the rule and therefore does not encounter the issue of non-uniqueness we addressed
here.
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One can show that {uf’} € D, which implies puf'(Z") € Ag with probability approaching to one
along P! . Thus, for sufficiently large n, pl (Z™) equivalently solves

arg max /nW (0, 1) = arg max / Vw0, z, t)dp
neAo neAo

= arg max \/n [/w(én,:z,t)du — /w(@o,x,t)du}

nEAo
where the second equality follows because the value of W (6, 1) is constant across p € Ag. We
will see that the maximization problem that plug-in rules solve weakly converges to a different
maximization problem from (3.4). We actually claim that

max \/n {/w(én,x,t)du - /w(@o,x,t)d,u} L mz%x/wgo(fc,t; A)dp asn — oo, (3.5)

nEAg HEAo
where A ~ N(h, I;1).

To see this, let B,(u) := /n [f w(0y, 2, t)dp — fw(@o,:n,t)du} and Boo(p) = [ g, (z,t; A)dp.
To simplify the argument, we impose a high-level condition that the process {B,(p): p € Ao} is
asymptotically tight.

By the best regularity of 6,, it follows that \/ﬁ(é —0y) = Io_lSn + org (1) with S, % N(0, 1) as
n — 00. Combining Le Cam’s third lemma and the delta method for the directionally differentiable
functions (Fang and Santos, 2019, Theorem 2.1) yields

vn [/w(én,x,t)du—/w(@o,m,t)du} & /u’;go(ac,t; A)dp asn — oo,

where A ~ N (h,I;'). By the asymptotic tightness of {B,, (i) : u € Ao}, Wwe can extend this result

to convergence in distribution of the process
B, KA By asn — oo on £°(Ayp),

by van der Vaart and Wellner (1996, Theorem 1.5.4). Then applying the continuous mapping

theorem yields

h
max B(p) ~ max Boo(p) asmn — oo,

which completes the argument.
It is evident that the solutions of RHS of (3.5) need not to solve (3.4). Thus the plug-in rules
might not be optimal in the limit experiment in general when w is directionally differentiable. In

the following, we provide a concrete example such that the plug-in rule becomes sub-optimal.

Example 3.9. Assume that the planner observes a single covariate X, say sex, with X = {zf, 2, }.
Suppose Fx(x¢) = Fx(xp,) = 1/2. Consider binary treatments setup where a fraction p = 1/2 of

the individuals to be treated. Assume that the conditional mean of the potential outcome is given
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t6? if x = Ty,

/det(y\x,Q) = 6o = 1.

0 if x = xp,
Thus, the mean outcome is identical for xy and x,, at true value 6y, but differs locally around 6.

Further, let ¢ > 0 satisfy —e < y4(0). In this case, the directional derivative of the maximin utility
function defined in (2.1) with A =0 is

. oh ih>0,
W, (g, 1;h) = we, (x¢,0;h) =0,
0 ifh<O,
and
h if h >0,
W, (Tm, 1;h) = We, (m, 05 h) = 0.
0 if h <O,

Note that M = Aq since 0y = 1. For simplicity, assume Iy = 1.

Under this setup, we have

o(=A)
1-d(-A)]’
where ¢ and ® denote the pdf and cdf of the standard normal distribution, respectively. Let Aj
satisfy h(Ap) =0 (numerically, Ay, ~ 0.506). Then note that h(A) > 0 if A > Ay and h(A) < 0 if
A < Ay. Therefore, the optimal rule in (3.4) is

//wgo(x,t;s)dN(A,Igl)(s)du - %h(A),u(fo) +R(A)p, h(A) = |A—

p(llzy) =1, p(l|zm) =0 if A> Ay,
p(llzy) =0, p(lzy,) =1 if A <Ay

In contrast, we obtain

/’ngo (x,t; A)dp = |max{A,0} — max {?,OH p(1lxy) + max{A,0}p.
Therefore, the optimal rule in (3.5) is
p(llzy) =1, p(llzy,) =0 if A >0,
p(lzy) =0, u(l]z,) =1 if A <O,
which is suboptimal for 0 < A < A,. R

Remark 3.10. To investigate the asymptotic properties of the plug-in rule formally, we need to
handle the non-uniqueness issue. This can be done by the penalization used for the construction of

the Bayesian rule.

3.4.2. When w is fully differentiable. If we strengthen the directional differentiability in Assumption
3.4 (i) to the continuous differentiability, then the plug-in rules attain the optimal value (3.4). To see

this, notice that the continuous differentiability of w(fy, z,t) implies that the directional derivative
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is linear; i.e., g, (x,t; 5) = g, (x,t) s for some g, (x,t) € R¥. Then (3.4) becomes
max / g, (z, 1) T Adp,

which is the same as (3.5)

This pattern is consistent with findings from the existing literature. As discussed earlier, the plug-
in rule is optimal in point-identified models when the utility function is continuously differentiable.
In contrast, Christensen et al. (2025) demonstrate that, in partially identified models, the Bayesian
rule is optimal when the utility function is only directionally differentiable, whereas the plug-in rule
fails to attain the optimal value for each signal A in the limit experiment unless full differentiability
holds. In partially identified settings, directional differentiability is a natural and often unavoidable

assumption, as full differentiability typically does not hold.

4. SIMULATION

We conduct a simulation study to evaluate the performance of the Bayesian rule and the plug-in
rule under the following conditions: (i) the welfare function is either smooth or only directionally
differentiable, and (ii) the sample size is relatively small (n = 200) and large (n = 500).

We closely follows the data generating process described in Example 2.3. For the training popu-

lation, the latent variable is generated by
Y = X B+ aT; +u,

where X; € R? denotes the observable covariates and T} is the binary treatment that is randomly
assigned. The first coordinate of X;, interpreted as age, follows a truncated normal distribution
with mean 4, standard deviation of 2, and is bounded on [1, 10]. The second coordinate, interpreted

as sex, is a binary variable assigned with equal probability. The observed outcome is
Y; = max{0,Y;"}.

We set By = (—2,-3), ag = 4, and u; ~ N(0,03) with op = 10. The observed data is an i.i.d.
sample Z" = {(Y;, Xi, T;)}_;. The parameters 6y = (5o, o, 0p) can be estimated by the maximum
likelihood using Z™.

In this Tobit model, the conditional mean of the potential outcomes in the training population

is given by

I

w(®,z,t) = (z' S+ at) — (z" 5+ at)® <—4"’T§—0‘t> +od (—wTi—at>

where ® and ¢ denote the standard normal cdf and pdf, respectively. Following Examples 2.1 and

2.2, we specify the planner’s utility function as

wr(f,x,t,e,\) = w0, z,t) + (1 — \) max{w(0, z,t) — &,0},
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FicURE 1. Welfare contrasts under smooth and directionally differentiable welfare at 6g

Welfare Contrasts under = (=2.0, —3.0,4.0,10.0), ¢=0.8, and A= 1.0 Welfare Contrasts under 6 = (=2.0, —3.0,4.0,10.0), £¢=0.8, and A = 0.0

2.00 —e— Male 2.00 —e— Male
-m- Female -m- Female

Age Age

where A € [0,1] and € > 0. We note that wg is differentiable when A = 1, but only directionally
differentiable otherwise. In what follows, we focus on the cases A = 0,1 and € = 0.8.

Figure 1 plots the welfare contrasts wr(6,z,1,e,\) —wg(6,z,0,e, ) for both males and females
at 0yp. Under A\ = 0, kinks appear when w(f,x,t) — e < 0. For a given covariate x, the contrast is
zero if both w(#,z,1) < ¢ and w(f,z,0) < &; that is, individuals with sufficiently low welfare are
regarded as deriving no benefit from treatment.

The upper panels of Figure 4 show the oracle (infeasible optimal) rule at §y. The rule assigns
treatment to females younger than approximately 6.5 and to males younger than approximately 5.
Notably, this oracle rule remains unchanged across A = 0 and A = 1. It also remains the same at
0o + h/+\/n, for the range of local deviation parameters h specified below.

We assume that the true distribution of covariates X in the training population is known and that
the target population shares the same distribution. Specifically, we define F'x as the joint distribu-
tion of (a) the truncated normal distribution for the age variable and (b) the binary distribution
for the sex variable. For computational purposes, we discretize F'x into 99 bins, each corresponding
to a distinct combination of age and sex. Each bin is assigned a probability mass according to Fy,
representing the proportion of individuals falling into that bin.

Suppose that the planner has resources to allocate to 75% of the target population. Let

W (0, 1) = / wr(0, 2., 2, Ndpu(, ).

4.1. Finite-sample average optimality. We evaluate performance under a sequence of perturbed
DGPs:
th:00+h/\/ﬁ, for h € H := {—2,—1.6,...,2},

where h/\/n is added to 0y element-wisely. Our goal is to compare the finite-sample average risk

for Q = P, B. The simulation proceeds as follows:

(1) For each h, draw J independent samples of data {Z™7 }37:1 from Fj' ~where A {Zf 2.
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(2) For each j:
a) Obtain the MLE estimates of parameter ¢’ and Fisher information matrix 7, .
nh nh

(b) Compute the plug-in rule un ) by

Mnh € argmax W(@ J I

(c) Draw L samples {0,}} | from N(éflh, (nfih)_l), which can be interpreted as the quasi-
posterior using the quasi-likelihood N (éj B (nl ih)_l) with the uniform prior (Kim, 2002;
Christensen et al., 2025). Then compute the Bayesian rule ,u by

unh € arg max — ZW O, 11

(3) Compute the oracle welfare W3, (0,,n) = max,e g W (0np, p), and estimate R(u&(Z™), 0,1)

by
J

> [WaeOn) = W (O, 13|
j=1
for Q@ = P, B. Store R(Q, h) for each h.

(4) Taking the average of R(Q,h) over h gives an estimate of [ R(u%,0,,)dh for Q = P, B.

Sl

R(Q,h) :=

We use POT, an open-source Python library developed by Flamary et al. (2021), to compute the

plug-in rule and the Bayesian rule.

4.2. Results. We study the cases of n = 200,500, J = 2000, and L = 2000 for both A = 0 and
A = 1. We first report the estimated risks, followed by comparisons of the resulting treatment
allocations.

Figure 2 shows the results for n = 200. While our theory predicts the plug-in and Bayesian rules
are optimal under smooth welfare (A = 1), the simulation shows that the Bayesian rule performs
better in small samples. We also observe that the Bayesian rule outperforms the plug-in rule under
directionally differentiable welfare (A = 0).

Figure 3 shows the results for n = 500. The Bayesian rule still performs slightly better when
A = 1, but the overall risk levels are substantially reduced, and the performance gap between the
two rules narrows. This indicates that both rules are approaching optimality as the sample size
increases from 200 to 500. When A = 0, the Bayesian rule continues to outperform the plug-in rule,
which is consistent with our theoretical predictions: under the directionally differentiable welfare
the Bayesian rule is optimal, but the plug-in rule may not be. Notably, the Bayesian rule performs
particularly well when the values of h are negative. In these cases, the welfare contrasts become
smaller, making the assignment problem more challenging. This highlights the robustness of the
Bayesian rule to local perturbations that make treatment decisions harder.

To gain further insight into the behavior of the two rules, we visualize the average allocations,
J1 > ug,’lj, for Q = P, E, under 0y, n = 200, and A = 0. Figure 4 shows that the Bayesian
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FIGURE 2. Comparisons of estimated risks: n = 200 (left: smooth welfare, right:

directionally differentiable welfare)
Comparison under 6 = (-2, —3,4,10), €=0.8,andA=1.0
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—&— Plugin
Bayesian
~ Average: 0.006764
Average: 0.005640

e

0.0175 A

0.0150

0.0125 A

0.0100

Risk

0.0075 A

0.0050 -

0.0025 A

—— Plugin

Bayesian

Average: 0.013721
Average: 0.009610

SESEE=

0.0000

-2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

FIGURE 3. Comparisons of estimated risks: n = 500 (left: smooth welfare, right:

directionally differentiable welfare)
Comparison under 6 = (-2, —3,4,10),£=0.8,andA=1.0
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rule deviates from the oracle rule only near the decision boundary, while the plug-in rule exhibits

substantial deviations even away from it. This relative stability of the Bayesian rule contributes to

a sizable risk reduction. A similar, albeit weaker, pattern is observed for n = 500.

Remark 4.1. Under the current simulation setup, when the total amount of resources is sufficiently

small, the kink points of the directionally differentiable welfare do not affect the assignment decision,

as the available resources are exhausted before the assignment rule encounters the kink points. In

such cases, the behavior of the two rules under directionally differentiable welfare resembles their

behavior under the smooth welfare. We set the resource level to 75% to allow interaction between

the decision boundary under the oracle rule and the kink points.



22

Note: The upper panels show the oracle rule, the middle show the Bayesian rule, and the lower show the
plug-in rule under 6y and n = 200.
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FIGURE 4. Comparison of (average) treatment assignment under directionally dif-

ferentiable welfare
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TABLE 1. Maximum likelihood estimates for math scores

Variables voucher age gender const o?

Estimates 2.06 -5.5  -0.72 102.77 104.31
Standard error 0.46 0.24 0.44 2.87 5.17

5. EMPIRICAL APPLICATION

We illustrate our methods using data from Angrist et al. (2006) continued from Example 2.3.*
As outcome variables, Angrist et al. (2006) use the test scores in language and math. Since the
estimation results are similar between these two, we use math scores as the outcome variable for
illustration. We focus on the case where the observed test scores are censored at the tenth percentiles
of the test score distribution among test-takers (denoted by 7), in line with the original article, to
address selection issues. In addition to the test scores, we observe treatment status, as well as age
and sex as covariates. The sample includes 3,541 individuals overall, with 1,788 girls and 1,753 boys.
Ages range from 10 to 17 with mean 12.7 and standard deviation 1.3. The maximum likelihood
estimates are summarized in Table 1.

We then hypothetically treat the marginal distribution of the covariates in the observed sample
as that of the target population, and compute both the plug-in and the Bayesian rules as described

in the previous section. In this example, the planner’s utility function is given by:
wr(0,x,t,e,\) = Aw(0,z,t) + (1 — N) max{w(0,z,t) —e, 7},
where

w(,z,t) = (x' f+at)+ (1 —x"f—at)d (W) +0¢ (W) .

Note that this is slightly different from the utility function in the previous section as the outcome
variable is censored at 7 # 0. In what follows, we focus on € = 3.5 and A = 0,1. We consider the
case where we can assign vouchers for 50% of the target population.

Figure 5 shows the allocations under smooth welfare (A = 1). As Table 1 shows, age has a negative
effect on outcomes. Accordingly, the plug-in rule allocates vouchers to younger individuals. Since
the effect of sex is slightly negative, the plug-in rule prioritizes females over males, resulting in
the allocation where vouchers are fully allocated to females aged 10-12, while not fully allocated
to males at age 12 as the resource is exhausted due to the capacity constraints. In this setting,
the Bayesian rule yields exactly the same allocation, which is natural since both rules are optimal
under smooth welfare. This also aligns with the simulation result in the previous section: both
rules perform similarly when the sample size is large enough.

Next, Figure 6 shows the allocations under directionally differentiable welfare (A = 0). For the
plug-in rule, the value of wg is censored by 7 at age 13 for females and at 12 for males in this

setting. As in the previous case, vouchers are fully allocated to females aged 10-12 and males aged

HMFor the replication dataset of the original article, see Angrist et al. (2019).
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FIGURE 5. Voucher allocations under smooth welfare

Note: The upper panels show the plug-in rule, and the lower panels show the Bayesian rule. The color
intensity represents the density of each cell in Fix, with darker shades indicating higher density.
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10-11. However, the remaining vouchers are randomly assigned, as the value of wg is just equal to
7 for the rest. For the Bayesian rule, after integrating with respect to the posterior distribution,
the value of wg is censored at 7 at age 13 for both females and males. This leads to allocation to
males at age 12 until the resource is exhausted, resulting in the same allocation as seen in Figure 5.
This illustrates that the plug-in and the Bayesian rules could generate different allocations under
A=0.

6. CONCLUSION

We studied the decision-theoretic optimality of treatment assignment rules under capacity con-
straints on available treatments. Since such constraints complicate the analysis of optimal rules,
we transformed the planner’s constrained maximization problem into the unconstrained one using

tools from optimal transport theory. This reformulation allows us to search for optimal rules in
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FIGURE 6. Voucher allocations under directionally differentiable welfare

Note: The upper panels show the plug-in rule, and the lower panels show the Bayesian rule. The color
intensity represents the density of each cell in Fix, with darker shades indicating higher density.
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terms of couplings that automatically satisfy the capacity constraints. We investigated two rules
previously studied in the literature—the plug-in rule and the Bayesian rule. Both are optimal in
the limit experiment when the planner’s utility function is continuously differentiable; however,
the plug-in rule may no longer be optimal when the planner’s utility function is only direction-
ally differentiable. A simulation study supports our theoretical predictions. We demonstrated our
methods with a voucher assignment problems for private secondary school attendance using data
from Angrist et al. (20006).

While we focused on posterior-risk minimization in the Gaussian limit experiment, which is
equivalent to the standard average optimality whenever the average risk is well-defined, asymptotic
minimax optimality is also a widely used benchmark in local asymptotics frameworks. Kido (2023)
provides an asymptotic minimax optimality result when the ATE is partially identified and there

are no constraints on available treatments. In that setting, the plug-in rule becomes optimal only
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when the oracle rule is (Hadamard) differentiable. Given that Hirano and Porter (2009) show the
minimax optimality of the plug-in rule under the full differentiability conditions, we conjecture that
the modes of differentiability of the planner’s utility function w plays a key role in the minimax

optimality of the plug-in rule in our setting.



OPTIMAL TREATMENT ASSIGNMENT RULES UNDER CAPACITY CONSTRAINTS 27
APPENDIX A. PROOF OF THEOREM 3.2

In what follows, the expectation Epr  can be understood as the outer expectation when py, is
not measurable. Also, P, denotes the JTE)hlnt law of A ~ N(h,I;*) and U ~ Unif[0, 1] in the limit
experiment.

Let {un} € D be any sequence of decision rules that will be matched by pi in the limit experi-

ment. We show the followings: (i)

1
/lini)inf VR (i, Onp)dh 2/ /Loo(,uoo(A,u),A)dAdu,
n—oo 0
(i)
1
Jtimsup ViR, )l < [ [ Loc(a(8,u), A)dAdu
n—00 0

and (iii) {un } is average optimal if the matched rule oo of f1,, satisfies f10(A) € arg minge 4, Loo (1, A)
for every realization of A ~ N(h, I;h).
(i). For any h,

Epp Vn[Wig(0nn) = W (Onn, pin(Z7))] (A.1)
= /f(max/ (Onp, x, t)dp — ﬁ%(/w(ﬁo,m,t)du) dFPg . (2)

+/\/ﬁ(max/w(ﬁo,x,t)du—/w(@o,x,t)dun(z)) dr; (=)
/\f(/w (Onn, z, t)dpn (2 /w 0o, x, t)dun(z)> APy (2).

For the first term of the RHS of (A.1),

/f(max/ (Onp, x, t)dp — m%(/w(ﬂo,x,t)du) dPg (2)

ne

= 0 Hdy — 0o, x,t)d Vi alh
\/ﬁ<gé%{/w( nha‘r?):u m%/w( vav)ﬂ)g)WM,O[ ]a

e
where the convergence follows from Lemma C.1. For the second term of the RHS of (A.1), it is

clear that
/\f (max/w 0o, z, t)dp — /w 0o, z,t)dpn (2 )) dPg (2) > 0.
For the third term of the RHS of (A.1),

[V ([ w00 [ wtt0.2,0000(2) ) 4B, 2
= [ [ty ts ) dpa (214, (2
[ [ Rt w.t) = w(bo,2.0)) ~ i, (o, )} dun ()P, (2
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where wg, (z,t; h) is the directional derivative of w(,x,t) at 6. By Assumption 3.4 (i),

’//{\/ﬁ[w(é?nh,a:,t) — w(Bo,2,1)] — iy (2. 1)} dpia(2)APL. (2)

(w Fg@;#f (Onn, , t) — w(Bo, z,t)] — ey (z, 8 h)| — 0.

Therefore,
hnnilo%f EPG"nh \/ﬁ [W./\*/( (enh) - W(enfm ,U/n(Zn))}

> Wx/t,o[h] — lim sup /li)go (z,t; h)dpn(2)d Py (2)

n—oo
= Wigglh) — lmsup [ plun())dF7, ()
> Wigolh] — Eau)ep, ¢(koo (A, U))

from the portmanteau theorem in metric spaces since the map ¢ : p+— [ g, (z,t; h)dp is bounded

continuous on M. Thus, it follows that

hnrr_1>10%f Epn \/ﬁ (Wii(Onn) — W (Onn, in(Z™))] db

> [ B, [Wigglh) — ¢(po0)] dh

://1 /Rk Wigolh] —/u’)go(x,t;s)duoo(A,u)} AN (h, I;Y)(A)dudh

—/ /Rk/ [WMO /wgo x,t; 8)dpioo (A, u)} AN(A, I; 1) (s)dAdw,

where the last equality follows by Tonelli’s theorem since the integrand is nonnegative.

By the
definition of L., the last display is equal to
1
/ /Loo(,uoo(A,u), A)dAdu.
0

It should be noted that Leo (oo (A, 1), A) can depend on u only through fis.

(ii) The argument can be carried out analogously to (i). However, for the second term of the

RHS of (A.1),
/\F <maX/w(907$at)dr“ - /w(eo,x,t)d,un(z)> FG.0 %)

+ /{unggAO} vn (l%%(/w(ﬁo,x,t)du — /w(eo, x,t)d,un(z)> dry, (2)
- /{Mn¢A0} Vo (ffé%(/w(eo’x’t)d” - /w(eo’m’t)d””(z)) Fh(2);
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where the second equality follows from max, e [ w(fo, x, t)dp = max,ea, [ w(bo, z,t)dp. Further,

/ f(max [ b0,z 630~ [ w02, (- >)dP£h<z>
{1né Ao} !

< VNP, (pn ¢ Ao) x 2 max _|w(fo,x,t)] — 0,
(z,t)eXxT

as n — oo from the definition of {u,} € D. Thus, applying the portmanteau theorem yields

limsupEpy /i [Whg(Oun) — W (O 10(2)] < Wigolh] ~ Ep, [ / gy (2, h)d,uoo] . (A2)

n—o0

Then we can conclude similarly as in (i).
(iii). Fix any sequence of rules {u),} € D, and let ul., be the matched rule of y),. Combining (i)
and (ii) yields

[ tinnint ViRun: 6un)dh < [t sup VR, Gun)h

n—oo

< /OI/LOO(MOO(A,U),A)dAdu
g/Ol/Loo(ugo(A,u),A)dAdu

< / lim inf v/ R (11}, On) AP,

which completes the proof.

APPENDIX B. PROOF OF THEOREM 3.5

B.1. Preliminaries. Our proof of Theorem 3.5 proceeds as follows. Lemma B.2 shows that the
Bayesian rule {g2} is an element of D and optimal in the limit experiment. Lemmas B.3-B.7 are
used to establish Lemma B.2. Additional auxiliary lemmas are relegated to Appendix C.

The following is a known result and can be found at van der Vaart (1998, Theorem 10.8).

Proposition B.1. Suppose that model is DQM at 6y. Let C,, be the ball of radius M, for a given,
arbitrary sequence M, — oo. Further, suppose [ |0||P dw(0) < oo. Then, for every measurable

function f that grows subpolynomially of order p,

/f Jce (h)m(0pn| 2" )dh—oPn (1) asn — oc.

B.2. Proof. Let (D, |-||) be the product metric space induced by (M,dw ) and ([0,1].|:]). Let
(D) := {f : D = R:sup(, -yep | f(1,€)| < oo} Define

(1:6) > Qulin&52) = [ | [ Vi wBun2,t) — (b, 2,8)) dn| moBun|2)h — =H (1),
(1, 8) = Qoo 5 A) / {/wgo z,t;h)d }dN(A,IO_I)(h) —eH(u).
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In the same manner as the definition of p5(Z™), we define p%,(A) as the limit of p%,  (A) where

b e(8) = avgmase [ [ i, (o5 5)AN (A, 1) (5)dp — H (1)
neAo

It is easy to see that uZ (A) € argming,ca, Loo(pt, A).

Lemma B.2. The Bayesian rule {uB(Z™)} satisfies Vnbg (uf(Z”) ¢ Ao) — 0 and (i) uB K3 uk

as n — oQ.

Proof. (i). We claim that for any 6y € ©, there are n and ¢/,(n) (which is at the order of n®*! for

some « > 1) such that for all n > n,

P (uf(z) ¢ AO) <P, (ﬂ'n (Nl/n(eo)clz) > 25;1) ,
where N.(6) := {0:]|0 — 6o|| < €} for ¢ > 0, and 7, (A|2) := [, 7,(0]2)d0."? Then the conclusion
follows since Christensen et al. (2025, Lemmas 9-11) imply that /nPg! (7Tn (Nl/n(90)0|z) > 25%) —
0 as n — oo.

It is sufficient to show that for any z,
T (Nijn(00)°]2) < 26), = i (2) € Ao, (B.1)
It is trivial if A9 = M, so suppose A9 C M. By Lemma B.3 below, there exists n such that n > n

implies

min/ W (8, u)m,(0|2)d8 > Sup/ W(8,v)m,(6]2)do
#€A0 SNy, (60) vgAo v Ny jn(bo)

Then there exists a = a(n) > 1 such that

1
min/ W (8, u)m,(0|z)d6 > sup/ W(0,v)mn(0]2)d0 + —,
HEA0 SNy /1 (80) v# Ao J N1/n(00) n

which implies that for n > n,

1
min / W (0, 11)7n(6]2)d0 > sup / W (8, )70 (6]2)60 + —.
nEAo SNy, (60) v Ao /N1 /n(00) n

Thus, we have

min ( / W(G,u)m(e\z)%) — min / W (6, 1) (0]2)d6 + W (6, 1) (0]2)d6
uEAo neAo \ SNy, (00) Ni/n(f0)¢

> min / W (6, 11)7(6]2)d6 + min / W (6, 1) (0]2)d6
HEAg N1/ (%) HEAg Ni/n(00)¢

> min W0, )7, (0|2)d0 — w0y, ( Ny, (00)°|2) M,
> mip [ W60 (Nyja(60) )

12This statement is an adaptation of Christensen et al. (2025, Lemma 8). Their proof cannot directly apply to our
setting because their arguments could fail when the set of actions, M in our notation, is not finite.
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where supy , [W (0, 1) < M < oco. Also,
sup /W(G, v)mp(6]2)do < sup / W(8,v)m,(6|2)d0 + m, (Nl/n(90)6|2) M.
vgAo vgAg /N1y (00)

For the promise for (B.1), we choose £/, > 0 that satisfies (na+12M)_1 < 2! < (n®2M) ™!, which

leads to
1

T (N=(00)°]2) < —
Then it follows that

min /W(G,y)ﬂn(0|z)d9— sup /W(O,V)Wn(9|z)d0

preAo v Ag
> min / W (8, u)m,(0|2)dd — sup / W (8, v)m,(0]z)d0 — 27, (Nl/n(go)cyz) M
HEA0 JNy ., (60) v Ao J N1 ;p(00)

2% —om, (Nl/n(90)0|z> M >0,

which implies

min / W (0, 1) (6]2)d6 > sup / W (6, 1) (6] 2)d6.
HEA v Ag

Thus we conclude p2(z) € Ay.
(ii). From the first statement, it follows that the asymptotic distribution of xZ(Z") has the

support only on Ag. Hence, for sufficiently large n, u? equivalently solves
4P (2) € arg max Qu (1, 0 2).
REAQ
By the definition of 1%,

On(pl(2),0;2) = lim max Qn (u, &; 2).

Take any closed subset G of M. Note that this closedness is in terms of (M, dy ). By the Port-

manteau lemma, it is sufficient to show that
limsup Py, (u5(2) € G) < Py (15 (D) € G)
n—oo

for the conclusion.

By Lemma B.5, for each n,

B _ Iy Y — 1 :
{Mn (2) € G} = {lalfolu&%}rﬁe Qn(p,€52) = la%lfé% Qn(u,s,Z)}.

By Lemmas B.6 and B.7, it follows that Q, & Qoo in F as n — o0, where

F = {f e (D) : lgg}%aA); fu,e) ex1sts}.
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By Lemma C.3, the operator f — lim.jomax,cs f(u,€) is continuous for any closed S C Ag at any

f € F. Applying the continuous mapping theorem yields

. h ..
16%1 max On(p, €3 2) ~ léff)‘ max Qoo(p,€5A)  as n — oo.

Then

limsup Py’ (,uf(z) € G)

n—oo

=limsup P} |(lim max ,€; 2) = lim max ,5'z>
msup P, (tim e O (1,55 2) = lim max O (.32

<P, (1i ‘A) =i A
< h(gig#&%%@oo(u,e, ) Siﬁlﬂ%)(ﬁ@“(”’g’ )),

where the inequality follows from the Portmanteau lemma. Since we can derive the equivalence of

the events
(A =<1 cA) =1 : A
{15 (A) € G} {;folugl%%@oo(u,s, ) im max Qoo (1, €3 )}
in the same manner, applying the Portmanteau lemma again yields uf K3 Mo as n — 00. O

Lemma B.3. There exists n > 0 such that for alln > n,

min / W (0, 1) (0]2)d0 > sup W (0, 1) (6] 2)d0. (B.2)
1€Ao SNy, (60) vg€Ag 7 Ni/n(60)

Proof. Let gn(p) = le/n(Go) W0, p)mn(0)de and Vi, = le/n(%) mn(0)df. First, we claim that
VJiQn(M) converges to W (6o, i) uniformly over M as n — oo; i.e., for all > 0, there exists n,,
such that for all u € M,

n>n, = ‘Vlﬁgn(u) — W(Qo,u)‘ <.

To show this claim, we argue that (i) for each u € M, Vlﬁgn(u) converges to W (6o, i) in pointwise,
and (ii) {gn},cy 18 equicontinuous; i.e., for all n > 0 and all u € M, there exists d, ) > 0 such
that for all n € N and all v € M,

dw (1, V) < 6y = |gn(p) — gn(v)| <.

Combining with the compactness of M, the uniform convergence follows from these two.
To see (i), note that

Vijngn () = W (00, )| < Vi | oy W (0:12) = W (B0, ) 7 (0]2)0. (B.3)
1/n\V0

Fix n > 0. Since the map 6 — W (0, u) is continuous at 6, there exists § > 0 such that
0e N5(90) - |W(9,u) - W(eo,u)‘ <n.

Then for all n with n=! < §, RHS of (B.3) is bounded above by 7.
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To see (ii), fix n > 0 and p € M. First, note that g,(p) can be written as
gn(p) = Eu[U(z,t)], Yp(x,t) ::/ w(0, z,t)m,(0]2)dd,
Nl/n(eo)

where E,, denotes the expectation with respect to the coupling p. Note that (z,t) — w(f,z,t) is
uniformly continuous and bounded since X x T is compact. Then a function (z,t) — wg(6,z,1)
defined by

wi (0, x,t) :=inf {w(0,2', ') + kd((z,t), (2, ) : (2/,¢') € X x T}

is k-Lipschitz continuous, and converges uniformly to w(#,x,t) from below as k — oo (see e.g.,
Heinonen (2001, Theorem 6.8)). Lemma B.4 below further extends that the convergence holds
uniformly over O; i.e., for all > 0, there is a sufficiently large K = K(n) such that

n
sup max |w(f,z,t) —wg(f,x,t)] < =.
geg(x,t)EXXT‘ ( ) K( )’ 3

Given this K, define

UE (1) = / wic (0, 2, )7 (6]2)d0.
Ni/n(00)

Then WX (z,t) is also Lipschitz continuous whose Lipschitz constant is less than or equal to K.

Therefore,

90 (12) = 90 ()] <E, [Un(@,8) = W (@,8)| + B, (W5 (2, 0)] — B[ (2, 0)]| + B,

UH (2,8) = W (a,1),
2 2
<§77‘/1/n + Kdw (p,v) < §77 + Kdw (p, v),

where the second inequality follows from the Kantorovich-Rubinstein duality (Villani, 2009, Theo-
rem 5.10). Thus, we obtain
n
dw (p,v) < 7= == |gn(p) = gn(v)| <.
3K
Therefore {g,},cy is an equicontinuous family.
Finally, we show (B.2). By Assumption 3.6, there exists > 0 such that for all p € A,
W (6o, ) > sup W(bo,v) + n. (B.4)
v Ag

By the uniform convergence shown above, there exists n,, such that for all u € M,

n>n, = ‘Vlﬁgn(u) - W(Qg,u)‘ < g
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Then fix n > n,;, and let p,, € arg ming,ea, gn(pt). For any v & Ay, we obtain

min In(1t) = gn(pin)

> Vvl/n |:W(007/J’n) - g}

> Vign |W(60.0) 41~ 7

> ga(v) + 3
where the second inequality follows from (B.4). Thus we obtain

. n
min > < su v + —.
Mergn(u) > {Vggogn( )} 3

Since 17 > 0 does not depend on v ¢ Ag, we conclude n > n,, implies min,c a, gn () > sup,g4, gn(v)-
O

Lemma B.4. For allnp > 0, there is a sufficiently large K = K(n) such that

su max |w(f,x,t) —wg(0,x,t)| <n.
sup max _[u(0,,1) ~ wr(0.2.0)] <7

Proof. To simplify the notation, let ) = X x T. Let D be the diameter of Y. Since y — w(0,y) is
continuous uniformly over © (Assumption 3.3 (ii)) and ) is compact (Assumption 3.2), we have

Q(6) :==sup sup |w(b,y) —w(b,y)—0 asdlo.
0€0 d(y,y') <5

Fix any # € © and y € Y. Then for all y/ € ),

w(8,y') > w(,y) — |w(b,y) —w(d,y)] > wb,y) — Qd(y,y)),

where the last inequality follows from the definition of Q. Adding kd(y,y’) to both sides and taking
the infimum with respect to vy yields
r€l0,D]

which implies

w(0,y) —wi(0,y) < sup @x(r), Pi(r) == Q(r) — kr.
re€[0,D]

By the definition of €, there exists § > 0 such that Q(§) < 1. Note that  is non-decreasing
function. Then if 0 < r < 4, we have ¢p(r) < Q(5) < n. If r > §, we have ¢y (r) < Q(D) — kd. Thus
sup,¢jo,p] k(1) < {2(6), Q(D) — ké}. Hence, for sufficiently large K, it follows sup,.c(o p) ¢k (1) < 7.
This implies

supmax {w(0,y) — wk(0,y)} < sup ¢x(r) <n.
9co YeY r€[0,D]

Note that it always holds wg(6,y) < w(6,y) for each k. Thus we conclude the proof. O
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Lemma B.5. For each n and each closed G C M, the following equivalence of the events holds:

B _
{un (2) € G} = {l‘flﬁ)l/ﬁg}“%}é(; Qn(p,€;2) = liro ma O, €5 Z)}

Proof. (C). Take any z € Z" such that {,uf(z) € G}. Note that

lim ma ,&;2) < lim ma, JE 2
alw uer)r%G On (e ) €10 p,EAX On (1 )

is clear. Suppose by way of contradiction that

lim ma ,€;2) < lim ma , E;
alw Mer}rﬁG On(p€:2) lw ueA)é On(p,€; 2).

Then, there is small enough e; > 0 such that

mex Qn(p,e152) < max Qn(p,e1;2).

We can take n > 0 such that

2 .
,u,éIAlA%)f%G Qn(:uvglv ) +2n < /E%EE; Qn(ﬂ>€172)

Since max,eca, Qn(pt, €;2) = maxyeca, Qn(p,0;2) as € | 0 from Lemmas E.5 and E.6, there exists

small enough €3 > 0 such that

,E2} ) — ,0; <.
,%?4’39"(“ 2; %) gé%Qn(u z)| <n

Also, because e H(uP) — 0 as € | 0, there exists small enough €3 > 0 such that e3H (u2) < 7. Let

e = min{ey,e9,e3}. Then,

Lrbréézx On(p,e;2) < max On(p,0;2) + 1
_//\F Oy ,) — w (00, 2, 8)) A (2)d (Bn] 2) +
< [ [ Vi (a2, t) — w(B,2.0)) Al () (Bun]2) — H(ul1) 4+ H () +

< max  On(p£2) + eH(uy)) +1)

< max Qn(u,e;2)+2n < max Qn(p,e;2),
neANG

which is a contradiction. Hence it holds lim. o max,c 4G Qn(i, €; 2) = lim. o max,ca, Qn(u, €; 2).

(D). For the other direction, take any 2z € Z" with

lim max ,€;2) = lim max ,E 2
el0 pEANG On )= 210 peAg On (1 )

Let e | 0 as k — oo. Recall
Hme, (2) = arg max On (s k3 2)-
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By Proposition 3.4, uf_ (z) converges to puf(z) weakly as k — oo. Moreover, by Villani (2009,
Theorem 6.9), we know that weak convergence in M is equivalent to convergence in (M, dy).
Hence, ,uf'z o (2) = pB(2) in the Wasserstein distance dyy.

First, we argue that for each K € N there is £k > K such that uﬁak(z) € G. By way of
contradiction, assume that there is K such that for any k > K, u5_ (z) ¢ G. Now, uf_ (2) ¢ G
implies that

B
LR Qn (ks er; 2) < Qnnep» Ek3 2)-

Take any 1 > 0 such that
. B .
nax Onltser; 2) + 1 < Qnlthy e, k3 2)-

Because

li . o . —
Jim (Z%%;Qn(ﬂaskaz) #Ela%}éa)gn(ﬂﬁkaz)) 0,

there exists K’ such that if £k > K’ then

max Qp(u,ex;2) — max  Q,(u,er; 2
HEA n(,u F ) ne(AoNG) n(H k )

= ma Sy €K Z) — a JER Z) < n/2.
m AXOQn(u k3 2) Meﬁﬁa)gn(“ k;2) <n/

Therefore, for sufficiently large k, we have

. B . . .
L On(pseri2) + 1 < Qnlfhyeps ki 2) < max Qn(pser; 2) < e Qs er;2) —n/2,

which leads to a contradiction. Therefore, for each K there is £k > K such that uﬁ - (2) €G.

Now, create such a subsequence {,ufi Eke(z)}eeN with ,u,fi 8ke(z) € G for each ¢. Note that any
subsequence of convergent sequence in arbitrary metric space converges to the same limit as the
original sequence. Therefore, ,uﬁ Ekz(z) — p2(2) in dy as £ — oo. Since G is closed, we conclude
that uB(z) € G. O

Let

Quliei2) = [ ( [yt b)) a6 )l — =H (),

Qulpe2) = | ( [ dingat h)du> AN (An(2). Ig ') (h) — eH (1),

where A, (z) = ﬁ S Iy ts(z) € R* with the score function s at 6y and A, NYeRN N0, 1.
Define D = M x [0,1]. Let {Qn(p,¢) : (i1,€) € D}, {Qn(p,€) : (1,€) € D}, {Qoo(ty€) = (1, ) € DY
be stochastic processes. Assume that they yield maps @, : Z" — (D), Qn : 2" — (D), and
Qoo : RE — 4@ (D). We can do this since the sample paths are continuous by Lemma C.2.

Let

F = (D) : i ist
{fe (D) ;ﬁ)l/r}é%f(u,e) exis S},

where the sup-norm is equipped to F. Note that Q,(2),Qn(2), Qeo(A) € F for any z and A.
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h .
Lemma B.6. Q, ~» Qs in F as n — oo.

Proof. Note that Q,, = Q. + opy (1) as a process in F as n — oo by Lemma B.7. Hence, it is
nh
sufficient to show that @, S Qs in F as n — o0o. Let Cyy C R be the closed ball of radius M

around 0. Define stochastic processes by

Qi (3 2) = /C ) ( / gy (£ 1)y, t)) (O 2)dB — eH (1),

Quarlpeez) = [ ([ s (o m)duten) ) AN (8,20, 5)0) = <H )

Qoo M (1,65 D) = /

Cm

(oot )t t) ) AN(A ) 1)~ B ),
First, we will show that Qn rr — QWM M0 in Fas n — oo for any fixed M. Note that

HQn,M('§ z") - Qn,M('7 Zn)H]_—

< max max _|wg,(z,t;h)] - Hwn(Onh\Zn) — N(An(Zn)yf(Tl)“

T heCu (z)EXXT v

where |||y is the total variation norm. Because C)y is bounded and wg, (z,t; h) is bounded for any

h, we know that maxpec,, max(, yexx7 [We, (¥,t; h)| < oo. From the Bernstein—von Mises theorem,
Hwn(enh|zn) — N(An (2™, Igl)HTV %0 asn— 0.

From Le Cam’s first lemma, it also converges to 0 along By . Therefore, Qv — Qn M Mo F
as n — oo.
Next, we argue that Qn,M & Qu in F as n — oo for any fixed M. Define ¢ : R¥ — F by

06)we) = [ ([ (o t:mdnten)) AN (610 — eH ()

Since ¢ is continuous, and A, LA~N (h, 1y 1) as n — oo by Le Cam’s third lemma, the continuous
mapping theorem implies ¢(A,,) & ¢(A) as n — oo. Thus QmM & Qu in F as n — oo.
Combining the above two findings, we obtain @, ar & Qoo,m in F as n — oo from the Slutsky
theorem. We also have that Qoo v — Qoo = OPhA(l) as M — oo where PP is the (marginal) law of
A ~ N(h, I[;l). Thus, there exists a sequence M,, — oo such that @, s, & Qo in F as n — oo.
Finally, it remains to show that Q, — Qn ., = OP;nh(l) in F as n — oo, which leads to the

conclusion, @, K3 Qoo in F as n — oo. By Assumption 3.4 (iii),

/Rk\cMn (/w%(w’t; h)d”($7t)> T (Onn|2)dh

Then applying Proposition B.1 yields that RHS is opp (1). Thus it is opp (1) as well. Hence it
0 nh

< / K (B)mn (Bn|2)dh.
RF\Cpy,

follows that Qn (i, e;Z") — Qna,, (1, 6;2™) 0 for any (u,e) € D. Then the continuity of sample
path implies @y, — Qn M, = opp (1) in F as desired. d
nh
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Lemma B.7. Q, = Q, + opp (1) in F as n — oo.
nh
Proof. Notice that for every z € Z", sup(,, .yep |Qn (i €5 2) — @n (i, €; 2)| is bounded above by
i t;h 0 dh
s 0,5 ) 7B )

where Wy, o(x,t; h) == /n (wW(Opn, x,t) — w(0o, z,t)) — g, (x,t; h). Let Cpy,, be a closed ball of radius
M,, around 0, where M, is the divergent sequence specified in Lemma C.4. Then the previous

display is further bounded by

n (b On,0(2, 85 h 1 h On,0(@, t; h)| 7 (Onn|z)dh

mu(Bunl2)(Cas) X o mawe o))+ [ Laecy,, (1) e [iuo(a )] mo(6unl2)
(B.5)

The first term of (B.5) converges to zero as n — oo by Lemma C.4. For the second term of (B.5),

note that from Assumption 3.4 (i),

a ,,t 07 t < a. ’t’h_|_ 1’
S 1V (O 2, 0) =l 2. ) < s e (2 5 )+ 1)

From Assumption 3.4 (iii), max, »exx7 |[tg, (7, t; h)| is bounded by K (h) that grows at subpoly-
nomially of order p. This implies that max, yexx7 [Wn,0(z,t; h)| is also dominated by a function
that grows subpolynomially of order p for sufficiently large n. Then applying Proposition B.1 yields

the conclusion. O

APPENDIX C. AUXILIARY LEMMAS FOR THEOREM 3.5

The following extends the result on Hadamard directional differentiability given by Roémisch
(2004, Proposition 1). Compared to his setting, the objective map [w(6,x,t)dy need not to be
linear in . By leveraging the uniform continuity from Assumptions 3.3 and 3.4, we obtain the

similar form of the directional derivative as his result.
Lemma C.1. For a closed set S C M, define the map W :© — R by

Ws(0) = max/w(e,x,t)d,u.
Hes

Then W is Hadamard directionally differentiable with derivative

Wio[h] =lim  sup /wgo (x,t; h)d
’ el0 LESE(60)

where
SE(0) = {u €s: /w(ﬁ,x,t)du+5 > mgg/w(@,x,t)du} £
n
fore >0 and 0 € ©. Moreover, if S C Ay then W;O[h] = max,es [ we,(z,t; h)dp.

Proof. The second statement follows from the first statement and the fact that S¢(6y) = S for any

€ > 0. Hereafter, we focus on the first statement.
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Fix any closed S C M and any ¢y € ©. Then, argmax,cs W (0, 1) # 0 because w(6o,-)
is bounded continuous on X x 7 from Assumption 3.3 (Villani, 2009, Theorem 4.1). Let u(6y) €
arg max,cs W (0o, pn). Since arg max,cs W (0o, 1) C S%(0) for any € > 0, we can guarantee S°(6p) #
(. Also, because w(fy, -, -) is bounded, max,ecg [ w(f, z,t)dp < co.

Let r, 1 0, and h,, — h. Define

1 * *
On = 7 (Ws (6o + rnhn) — Ws(60))
n
and we want to show that o, — W;}O[h]. But, it is enough to show that for any subsequence
of {0y}, there exists a further subsequence that converges to Wg,o[h]. Take any subsequence and
denote it by {o,} for simplicity.
Define the maps T, : S - R and T : S — R by
1
T (1) = /7 (w(8 + b, 2, £) — w(00, 2, 1)) dps,

Tn
T(p) = /u’)go(x,t;h)d,u.
First, to see that T,, — T uniformly, take any u € S. Note that

Tu(p) = T(u)| < max

1 .
(@)eXXT |19 (W(Bo + rnhn, 2,t) —w(bo, 2, 1)) — e, (2, 8; h)‘ '

Tn

We can make RHS arbitrary small as n — oo without depending on p from Assumption 3.4 (i).

Hence, we conclude that T;, — T uniformly.
Thus, for each n there exists K7 such that for each k > K;

‘/ Tik (@ (0 + T oy s, 8) — w (0, 7, £)dja) — /u'zgo(a:,t; h)du‘ <2 VuesS.  (C.1)
Moreover, from Assumption 3.3 (i), there exists Ko such that for each k > Ko
’/w(@o + rp by, T, t)dp — /w(Gg,x,t)d,u‘ <r2/2 Vues. (C.2)
Let k > max{K;, K>}, and construct a further subsequence {o, }.

For each k, take any pu,, € Srarny (6o). Then, from pu,, € S and the definition of SraTny (6o),

W5 (B0 -+t hng) — W3(60)) =~ (max [ w60 + g2, ) — max [ (b, 2,0 )
m

Ty, Ty, \ HES

1
> — (/w(@o + 7y by, @, ) d e, — mag:/w(@o,x,t)du>
pe

Ty
1

> (/w(@o + 7y Py, @, ) d e, — /w(@o,x,t)dunk> — r%.
Ty

From (C.1), we have
Ony, > /u')o(x,t; h)dpn, — 2r2.
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Therefore,
Ony > /woxth)d,u—%
nes "T"k (60)
Since r2 | 0, it leads to

liminf o, > hm sup /wo (x,t; h)d
k—o0 HGSE (60)

Also, take any i, € SR (6o + 7py, oy, ). Then,
1 1
(W5 00+ o) — W5(00) =~ (mae [ (00 -+ o, ) = s [ (00, 00ap )
n n

Ty, Tny,

IN

o (/w@o +Tnkhnk,$,t)dunk — /w(e()?xat)dﬂnk) +7"72r
k
From (C.1),
Oy, < /weo(m,t; h)dp,, + 2rp.

If we would have S™"& (B0 + rnyhn,) C SraTn T (6p), then we obtain

On, < sUp {/weo (x,t;h)dp = p e SraTn TR («90)} + 212,

which leads to

limsup oy, <lim sup /wgo(az,t; h)du,
k00 =40 pies=(00)

thus oy, — W;,o[h]~ Hence, it suffices to show S"" (Oo+7n,hn,) C SraTm T (6o) for the conclusion.
Take any v € SraTn (6o + rnyhn,,), then

/w(90 + 7y, )dv + T%Tnk > I;lgg{/w(eo + 7y By, )d g (C.3)
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Let p(6o) € argmax,cg [ w(fo, x,t)du, then

/w(ﬁo, x,t)dv + r2rp, +r2
> / w(By, z, t)dv + 12 + r&agc/w(ﬁo + rog by, x, t)dp — /w(90 + roghn,, x, t)dy o (C.3)
> / w(bo, z, t)dv 4 r2 + /w(@o + 7y By, L t)dp(6p) — /w(Go + 7, By, , t)dy
:/w(ﬁo,x,t)du + 72

[ w0+ ruhng 2 O)3n(60) ~ [ w(bo,w.)dp(00) + [ w(bo,w.)dpa(00) = [ w0+ Ty hny. 3. 1)y
:/w(ﬁo,x,t)d,u(l%) + 72

+ / (w(By, z,t) — w(bo + 0y hn,,, x, 1)) dv + / (w(By + T9p, oy, , ) — w (O, , t)) dpa(Bp)
> [ w2, 0du(00) + 12— /2= 122 (C2)
:/w(govfﬂat)dﬂ(%)-

Thus, v € S™2™ 7% (6). O
Lemma C.2. The sample paths of Qn, Qn, and Qo are continuous and bounded in M.

Proof. First, we will show that the sample path of

Qulinei2) = [ ( [y (o)) ma (Bunl 2 — eH )

is continuous. Note that, then, it is bounded because M is compact. Fix any z, and take any
{(pr,ex) oy C D that converges to (u,e). Since D is a metric space, overall convergence implies

elementwise convergence. Thus, pr — p in the Wasserstein distance and ¢, — €. We are done if

’/ {/wQO(x’t;h)duk B /weo(x,t; h)dﬂ} Tn(Onn|2)dh — e H () + eH ()| — 0,

as k — oo.
By the triangle inequality, LHS is bounded above by

[ ot o = [ ot ks B 2)h] + 0 ) — < ).

The second term converges to zero since H is continuous. For the first term, since px — p in the

Wasserstein distance implies pg ~» p, we have

/</“’90($”5;h)dﬂk> T (Onnl2)dh = / (/ weo(x,t;h)wn(enhyz)dh> Ay

5 / ( / e (@, & h)m(enhy@dh) dp,
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where the convergence holds if the map (x,t) — [ wg, (2, t; h)mn(0nn|2)dh is continuous and bounded.
To see the continuity, let {(zx,tx)} be such that (zy,tx) — (x,t). Then

‘ / ey (2, £ W) (Brun | 2) A — / g (2, 6 ) (Brn|2) A
< / litgy (x, £ 1) — tigy (0, 5 1) | T (O |2)dh = O s k — oo,

where the convergence follows from the continuity of g, (z,t; h) in (x,t) and the dominated conver-
gence theorem. The boundedness of (z,t) — [ wg,(z,t; h)m,(0nn|2)dh follows from the continuity
of g, (x,t; h) in (x,t) (Assumption 3.4 (ii)) and the compactness of X x 7 (Assumption 3.2).

Similar arguments can be applied to Q, and Quc. O

Lemma C.3. For any S C Ag. the operator M : F — R where M(f) := lim. o max,eg f(u,€) is

continuous.

Proof. Let fr, — f in F as k — oo. Note that M(f) and M (fy) exist for each k by the definition
of F. Then

\M(f) — M(fi)| = 18%1 max fu,e) — ma Ju(p, )

<l —
> Elig}}é%{|f(/'&75) fk(/j’ag)‘

< max |f(:ua 5) - fk(/"gﬂ — 0,
(p,e)ED

as k — oo, where the equality follows because |-| is continuous, and the convergence follows because
fr = fin F as k — oo. O

The next result is an adaptation of Christensen et al. (2025, Lemma 3), where we need a modi-

fication to allow max-operator within the expression.
Lemma C.4. There is a sequence {M,} such that M, T oo, M, /+/n — 0, and

sup max _|v/n[w(bnn, x,t) — w(fo, x,t)] — we, (2, t; h)| — 0.
IRl <2M,, (.t)€EXXT

Proof. From Shapiro (1990, Lemmas 3.3 and 3.4) and Assumption 3.4 (i), we know that for any
compact S C R¥ and ¢ > 0, there is N such that sup,cg gn(h) < € for any n > N where g,(h) =
maxX(z t)exxT ‘\/ﬁ [w(enha x, t) - 71)(60, Zz, t)] - w@o (CL‘, t; h)| Define

Y = sup gn(h)
[|h]|<21og(1+n)

We are done if 1, — 0 because log(1 + n) 1 co and n~'/?log(n + 1) — 0. To show 1, — 0, it
is enough to show that for any subsequence 1, (abusing notation) there is a further subsequence
converging to 0. First, consider supjpj<aiog(i+1)9n(h). We know that there is N(1) such that
SUP||p<2log(1+1) In(h) < 1/log(1l + 1) for any n > N(1). Second, for supj,|<2iog(1+2) gn(h), there
is N(2) such that supy,<2iog(1+2) gn(h) < 1/log(l + 2) for any n > N(2). Proceed with N(1) <
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N(2) < N(3) < --- WLOG. Then, the map N : N — N satisfies i < j = N() < N(j).
Hence, ¥y, is a subsequence of ¢,. To show ¢y () = Sup|s<2iog(i+n) gN(n)(h) — 0, take any
e > 0. Since 1/log(1 + n) | 0, there is n such that 1/log(1 + n) < ¢ for any n > n. Therefore,
YNy < 1/log(l+n) < ¢ for any n > n. O

APPENDIX D. PROOF OF PROPOSITION 3.3

By Villani (2009, Corollary 6.11), p +— dy (u,v) is continuous on M.'® Convexity of u
dw (u,v) is shown below. Because the map p — dy (p, V) is convex and nonnegative and the map
Ry 5 x — 22 is increasing and strictly convex, the composite map p — (dy (1, v))? is strictly
convex and nonnegative. Also, it is bounded by the compactness of M and the continuity.

To see the convexity of u — dyw(u,v), fix any p1,ue € M and a € (0,1). To simplify the
notation, let ) = X x T. Let

vi €arg inf / d(y, ")y (dy, dy'"),
el (p1,v)

v5 € arg inf /d(y,y’)’v(dy,dy/)'
e (p2,v)
First, we show that ay] + (1 — a)vs € I'(aps + (1 — a)pe, v). Take any A, B € Y. Then,
(@ + (1 —=a)y) (Y x B)=ay (Y x B)+ (1 —a)yu(Y x B) =v(B).

Also,

(i +(1—a)y)(Ax))

=ay(Ax V) + (1 -a)3(AxY)=ap(A) + (1 —a)ua(A) = (aur + (1 — a)uz2) (A).
Hence,

(g + (1= a)2) < [ dy.y)d(eni + (1= a)a3)

= a/d(y, y')dy + (1 - a) /d(y,y’)dvé" = ar(p) + (1 — a)r(uz).
APPENDIX E. PROOF OF PROPOSITION 3.4

We provide a proof under a general framework using continuous and bounded cost function
c¢: X xT — R. Define

C.:= inf / cdj+eH(p).  (¢EOT)

= inf d . T).
Co Jnf [ cdu (0OT)

Let My = argminge g [ edpe. It should be noted that (M, dy ) is a metric space which is convex

and compact.

BMore explicitly, if px converges to p weakly in M, then dw (ur,v) — dw (u, v).
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Our proof of Proposition 3.4 proceeds as follows. Lemma E.4 gives the conclusion under the
assumption lim._,90C: = Cy. Lemmas E.1-E.3 are needed to prove Lemma E.4. Finally, Lemmas
E.5 and E.6 show lim._,oC. = Cp.

Lemma E.1. Let pu, € M. Suppose that lim,, H (u,,) =: a € R exists and that

limsup H (tm,n) > a

m,n— 00

for pimpn = (tm + pin) /2. Then {pn} converges weakly.

Proof. Let D < oo be the diameter of X x 7. By Villani (2009, Theorem 6.15), dw (u, v) is bounded
by D ||p — v||py. By following the same arguments of Nutz (2022, Lemma 1.9), we obtain

i (s = pnllpy = 0.

Thus it follows that limy, oo dw (ftm., ftn) = 0. O

The next result is an adaptation of Nutz (2022, Theorem 1.10). We use weak convergence as the

mode of convergence, whereas the original proof uses convergence in total variation.

Lemma E.2. Let Q@ C M be a convex and closed subset. There exists a unique s € Q such that
H(p) = inf H(p) € [0, 00).
neQ

Proof. Let p,, € Q be such that H(u,) — inf,co H(i'). By convexity of Q, we have fiy,, =
(m + pn) /2 € Q and hence H(pm,n) > inf,co H(p) for all m,n. Lemma E.1 shows that {su,}
converges weakly to some p,. By the continuity of u — H(u), p. is a minimizer of inf,yco H(i').

Uniqueness follows from the strict convexity of H. O
The next result is an adaptation of Nutz (2022, Proposition 1.17).

Lemma E.3. Consider a decreasing sequence of sets Q, C M that are convex and closed, and let

Q =N, Qp. Let py, = argmin,cg, H(u) be the minimizer of Q,. Then
fn — s weakly, and H(pp) — H (),
where p, = argmin,yco H(1').

Proof. Note that the inclusion Q,, D Q,+1 D Q implies that H(u,) is increasing and H(uy,) <
inf,yco H(p'). Since any increasing and bounded-above sequence is convergent, we have lim H (j1,,) <
infyco H(i') < oo. For m > n, we have ppy = (fm + fin) /2 € Qpn by convexity. Then
H(pimm) > H(pn). Thus imsup,, ;oo H(tmn) > lim H(py). Since lim H(u,) < oo, Lemma
E.1 implies that w, converges weakly to some limit u. By the continuity of H on M,

H(u) =lim H(pn) < inf H (1)
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Thus we obtain p € argmin,cg H(x'). By the uniqueness of the minimizer shown in Lemma E.2,

we have pu = py; i.e., u, converges weakly to piy. O
The next result is an adaptation of Nutz (2022, Theorem 5.5).

Lemma E.4. Suppose that lim._,oC. = Cy. Let p be the optimizer of (eEOT). Then,
pe — ps weakly ase L0, and H(pe) — H(u),

where pi,. = argminge,,, H(1).

Proof. The additive form of (¢EOT) and the optimality of the couplings imply that

H(pe) < H(per) and /cd,u‘E > /cdugf for e > &' > 0.

Denote Q := My and
Q, = {,U,EM:/cdug/cdua}.

Note that Q. is a closed convex set, and p. = argmin,co, H(p).** Then [edpe > [ edpes implies
that Q. D Q. for € > £’. Next, we claim that Q@ = N. Q.. It is easy to see Q C N.Q.. For the other
direction, take any u € N.Q.. Then we have y € Q because

[eduz [eap<c.~co
Then applying Lemma E.3 completes the proof. 0

Thus, it remains to show that lim._,oC. = Cp. The next result is an adaptation of Nutz (2022,
Lemma 5.2).

Lemma E.5. Suppose that given n > 0, there exists u" € M with [ edp < Co+n and H(u") < oo.
Then lime_,0C: = Cg.

Proof. Given n > 0, we have
C: < /cd,u77 +eH(u") <Co+n+eH(u").
Thus lim._oC. < Cp + 7. Since n > 0 is arbitrary, we are done. O
The next result is an adaptation of Nutz (2022, Lemma 5.4).
Lemma E.6. Let ¢ be continuous and bounded. Then lim._.oCe = Cy.

Proof. Let n > 0 and p € M an optimal transport for (OT). By Nutz (2022, Lemma 5.3), there

exists ' € M such that
’/cd,u”—/cd,u‘ <.

14gyppose, by contradiction, that there exists p € Q. such that H(u) < H(u.). Then

/cd,u—i—sH(u) < /cdug—l—eH(pE),

which contradicts with the optimality of p..
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Note that H(u") < co. Then applying Lemma E.5 yields the conclusion. O

Then by Lemma E.4, the conclusion of Proposition 3.4 follows.

APPENDIX F. OPTIMALITY IN SEMIPARAMETRIC MODELS

We generalize the setup presented in the main texts to allow more flexible sampling distributions
for observable data. Our setup here basically follows Christensen et al. (2025, Section 5). Assume
that data Z" = (Z1,...,2,) are i.i.d. and Z; follows the distribution Py, indexed by § € © C R
and 1 € H, where 7 is a possibly infinite-dimensional nuisance parameter. For instance, in a GMM
model, H is the set of marginal distributions n of Z; where for each n € H, there exists § € © such
that 7 satisfies the moment restriction [ g(6, z)dn = 0, given some known vector function g.

It is said that P = {Py,, : 0 € ©,n € H} has the least favorable submodels at (6,7) if there exist
an open neighborhood Oy, of 6 and a map Oy, >t + 1, € H such that the parametric submodel
{Piy, : t € Ogy} has the density function p;,, with respect to a common dominating measure v
and satisfies the DQM condition

/

where é@m : 2" — RF is the efficient score function for §. Thus, the parametric submodel {P;,, :

1+ 2
\/p9+h,779 - \/pe,ng - §hT£9,77p9,779 dv = O(HhHQ)7 as h — 07

t € Og,} achieves the semiparametric efficiency bound by the inverse of Iy, := Ik lfg’nlfg:ndPgﬁne. For
each (0,7), the least favorable submodels need not to be unique. Picking one of them gives no loss
of generality because they all behave in the same manner asymptotically.

Following the parametric model, we assume that the planner’s utility function w only depends

on 6, and not on the nuisance parameter 7.

F.1. Decision theoretic framework and rules. Fix (6p,79) € © x . Consider a least favorable
submodel { Py : t € Og,y}, where B(t) = (t,7;). Under the reparametrization t = 0y + h/\/n =
Onn, Z™ follows the distribution Pg(ﬁnh)' We denote -5 by the weak convergence along the path

Pg(a L) KN by the convergence in probability along Pg(e L) and 2 by the convergence in probability

along Py o

We define the class of the sequences of rules by
D= {{,Un} D (Z7) & Qo,.n and \/ﬁpg(gnh)(un € Ag) »0asn— oo VYheRF VY e @}.

The optimality criterion in this semiparametric model is based on the least favorable submodels.
The risk associated with the map Z" — u(Z") € M at (,n) € © x H is given by

R, (0.m) == Epy, [Wiq(0) = W(0.1(2")].

where the expectation is taken with respect to the sampling distribution Pg?n of Z™. Let m be

any prior density function on © that is continuous and positive at 6y. Then, a sequence of rules
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{pr} € D is said to be (semiparametrically) average optimal if {p}} attains the infimum of the
asymptotic risk function:

inf limint / VR (s B(O0n)) 7 (O ). (F.1)

{Hn}ED n—0o0

F.2. Quasi-Bayesian implementation of the Bayesian rules. We replace a posterior function
specified in the parametric setup by a quasi-posterior. Let 0,, be the (semiparametrically) efficient
estimator of 6, and IA; ! be a consistent estimator of the asymptotic covariance Iy, ; We combine
the limited-information quasi-likelihood N(6,, (nd,)™"') for 6 and a prior 7 on © to obtain the

quasi-posterior

A

1al6127) o exp (=50 = 8T (01,)(0 — 8,)) 7(0).

We compute the Bayesian rules using m,(0|2"); i.e.,
HE(2) € Mo(2) i= angmass [ /W (0, ) (6]2).
I

Following the parametric model, we construct a unique {u2(2)} where 2 (z) minimizes the penalty

function H over M gp:(2).

F.3. Optimality results. As an analog for Assumption 3.1 in the parametric models, we impose

the following assumptions.

Assumption F.1. (i) © is open.

(ii) P has a least favorable submodel at each (6p,m9) € © x H.

(iii) Ig, n, is finite and nonsingular at each (8p,m0) € © x H.

(iv) For each (6g,m0) € © x H and each h € R*, (iv-a) \/ﬁPg(enh)(Hén —bp]| > €) — 0 for each
e >0 asn — oo, and (iv-b) there exists ¢ € (0,1) such that \/ﬁPg(Gnh)(c < Amins Amax < ¢ 1) = 0
asn — oo,

(v) For each (6g,m0) € © x H, (v-a) /n(0, — ) L 7 with Z ~ N(h,Ie_o?nO) for all h € R* as

n — oo, and (v-b) I, RN Iy, .y as m — 00.
Theorem F.1. Under Assumptions F.1 and 3.2-3.6, {2} € D is average optimal.

Proof. Once we fix the parameter (6o, 70) € © X H, the least favorable submodel { Py : t € Og, 5 }
becomes a parametric model. Hence, only slight modifications from the proof of Theorem 3.5 are
needed. Specifically, Lemmas 77 and B.5 follow in the same manner. For Lemma B.2, we need a
modification to show \/ﬁPg(enh)(uf(Z”) ¢ Ag) — 0 for all h € R¥ which is given in Lemma F.2
below. For Lemmas B.6 and B.7, we need to use the quasi-posterior counterparts of the Bernstein-
von Mises theorem given by Christensen et al. (2025, Lemma 5) and Proposition B.1 given by Xu
(2024, Lemma A.5). Auxiliary lemmas given in Appendix C do not need modifications. O
Lemma F.2. The Bayesian rule {uB(Z™)} satisfies \/ﬁPg(g )(,uf(Z") Z Ag) = 0 as n — oo.

nh
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Proof. From Lemma B.2 (i), for any 6y € ©, there are 7 and &/,(72) (which is at the order of n®*!

for some o > 1) such that for all n > n,

P, (uB(2) ¢ Ao) < PR, (7 (N1jn(60)°]2) > 223,

Under Assumption F.1 (iii) and (iv), Christensen et al. (2025, Lemma 12) implies that

VP, (7n (N1 (00)°) > 261,) =0

as n — 00. O
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