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Abstract. We study treatment assignment when treatments are limited in supply, where a planner
aims to maximize social welfare by assigning treatments based on observable covariates. Such
constraints are common when treatments are scarce and costly, but they complicate the analysis
of optimal assignment rules because assignment probabilities must be coordinated across the entire
covariate distribution. We develop a new approach that reformulates the planner’s problem as an
optimal transport problem, which makes the constraints analytically tractable. Using a limits of
experiments framework, we establish local asymptotic optimality results for two canonical decision
rules—the plug-in rule and the Bayesian rule. We show that the former rule can dominate the latter
rule, with simulations demonstrating sizable risk reductions. An empirical illustration using school
voucher program data from Angrist et al. (2006) demonstrates how the two rules differ in practice.
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1. Introduction

When a social planner allocates treatments such as school vouchers or subsidies, an important
question arises: who should be treated given available data? The planner typically does not know
the true treatment effects but can rely on observed data from experimental or observational studies.
The literature on treatment assignment problems has examined how to use available data to design
treatment assignment rules that maximize social welfare (e.g., Manski, 2004; Stoye, 2009; Hirano
and Porter, 2009). While this literature has made substantial progress, much less is known about
how to design optimal rules when treatments are limited in supply. In many real-world settings,
treatment assignment is subject to such constraints—budgets, supplies, or available slots are limited,
so not everyone who could benefit can be treated.

This paper extends Hirano and Porter (2009) to derive optimal rules when treatments are limited
in supply. To accommodate these constraints, we reformulate the planner’s problem as an optimal
transport problem, and establish locally asymptotically optimal assignment rules—results that, to
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our knowledge, have not yet been formally derived in the literature. The framework also naturally
extends to settings with non-binary treatments.

At first glance, one might think that the constrained problem is only a straightforward extension
of the setting without constraints on available treatments—simply add a quota. Since Hirano and
Porter (2009) show that assigning treatment to individuals with (efficiently) estimated positive
effects is locally asymptotically optimal when there are no constraints on available treatments, it
is tempting to conclude that ranking individuals by their estimated effects and treating them in
descending order until the quota is filled would also be optimal. While this intuition turns out to be
correct under suitable smoothness conditions on the planner’s utility function—a result we establish
formally—it is far from straightforward to prove. The presence of capacity constraints makes the
derivation of optimal assignment rules substantially more complex, as explained below.

We consider a planner who aims to maximize social welfare by designing treatment rules based
on observable covariates, subject to a capacity constraint. Let w(θ, x, t) denote the planner’s utility
from assigning treatment T = t to an individual with covariate X = x, where θ ∈ Rk characterizes
the treatment effects. For example, if w(θ, x, t) is the conditional mean of the potential outcome
given (x, t), then θ is a parameter indexing the conditional potential outcome distribution. Suppose
that the true parameter θ0 can be efficiently estimated by an estimator θ̂n constructed from ex-
perimental or observational data. For simplicity, consider a binary treatment setting where a fixed
fraction p of the population is to be treated. When θ0 is known, the planner’s problem is

max
δ

∫
X

{w(θ0, x, 1)δ(x) + w(θ0, x, 0)(1 − δ(x))} dFX(x), s.t.
∫

X
δ(x)dFX(x) = p,

where FX is the distribution of covariates and δ(x) is the probability of assigning treatment to
X = x. In reality, θ0 is not known to the planner. Thus the planner utilizes the available data to
design treatment assignment rules.

Under the current setup, however, we cannot simply follow a standard approach to analyzing
the asymptotically optimal data-driven rules taken by Hirano and Porter (2009) and others. This
approach first derives the optimal rule for each covariate x in an asymptotically equivalent (and
simpler) problem. It then constructs a sequence of feasible data-driven rules that asymptotically
match the optimal rule in the limit. The key is that the limiting problem becomes tractable because
the optimal rule in the limit is selected from the set of rules obtained as asymptotic representations of
data-driven rules, which only depend on random variables following a shifted normal and a uniform
distribution (van der Vaart, 1991, Theorem 3.1).

Under capacity constraints, this pointwise approach fails because the planner must coordinate
assignment probabilities across the entire covariate distribution FX . Then, one might define the
planner’s action space as the set of (measurable) functions

F :=
{
δ : X → [0, 1]

∣∣∣∣∫
X
δ(x)dFX(x) = p

}
,
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but directly working with F is inconvenient. It is difficult to obtain the asymptotic representations
of assignment rules or to solve the maximization problem because F fails to be compact under
common norms when the support of X is not finite or countable.1 To proceed, we therefore need a
formulation that circumvents this technical difficulty.

Our first contribution is to achieve this by reformulating the planner’s constrained problem as
an optimal transport problem. The key observation is that, when the capacity constraint binds
exactly, the (unconditional) distribution of treatment assignments must be a Bernoulli distribution
with success probability p. The planner’s problem can then be framed as transporting the mass of
FX into the Bernoulli distribution FT , in a way that maximizes the social welfare. This reformulation
allows us to treat the action space as a set of couplings—joint distributions on X × {0, 1} whose
marginals are FX and FT — equipped with the Wasserstein distance. This new action space is
a compact and convex metric space, which are convenient properties for obtaining the asymptotic
representations of assignment rules and for solving the planner’s problem. Moreover, this framework
naturally extends beyond binary treatments to general discrete or continuous settings. To our
knowledge, this is the first study to reformulate the optimal treatment assignment problem into an
optimal transport problem.

Our second contribution is to provide decision-theoretic optimality results under capacity con-
straints based on this reformulation. We employ posterior-risk minimization in the Gaussian limit
experiment as our optimality criterion. This criterion is equivalent to the standard average opti-
mality used in Hirano and Porter (2009) and Christensen et al. (2025) whenever the average risk is
well-defined, while remaining applicable even in settings where average optimality may not be.

We analyze two canonical assignment rules: the plug-in rule, replaces θ0 with its efficient estimator
θ̂n, and the Bayesian rule, which forms the posteior on the parameter space Θ based on the observed
data. Our main results are as follows: (i) both rules are optimal in the limit experiment under
capacity constraints when the planner’s utility function is continuously differentiable, (ii) the plug-
in rule is generally suboptimal, while the Bayesian rule remains optimal when the planner’s utility
function is only directionally differentiable.

Directionally differentiable utility functions often arise in empirically relevant settings. For in-
stance, they arise when the (conditional) potential outcome distributions may differ slightly between
the target and training populations, and the planner adopts a maximin-type utility function that
is robust to such distributional shifts (Adjaho and Christensen, 2023).

Our results are consistent with the existing literature. The plug-in rule is known to be average op-
timal under point-identified models when the planner’s utility function is continuously differentiable
(Hirano and Porter, 2009), while the Bayesian rule is known to be average optimal under partially

1By van der Vaart (1991, Theorem 3.1), F needs to be complete and separable to obtain the asymptotic representations
of assignment rules. Under the sup-norm, F is typically not separable when X is not countable. Under Lp-norm;
i.e., ∥·∥p =

(∫
|·|p dFX(x)

)1/p, F is separable and complete, but not compact unless X is finite. Thus it is not
straightforward to find a suitable norm to work with F .
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identified models when the planner’s utility function is directionally differentiable (Christensen et
al., 2025), where the lack of point identification similarly precludes full differentiability and renders
the plug-in rule suboptimal. While our analysis concerns a different environment by featuring capac-
ity constraints, our limit-experiment results imply the corresponding average-optimality conclusions
within our model whenever average optimality is well-defined. Thus our findings complement the
existing literature by establishing analogous optimality properties in capacity-constrained settings.

To quantify the performance gap between the two rules, we conduct a simulation study. The
results support our theoretical findings. Specifically: (i) the Bayesian rule achieves a substantially
lower risk than the plug-in rule in small samples for both continuously and directionally differentiable
utility functions, (ii) the two rules behave similarly under the continuously differentiable utility
function in larger samples, and (iii) the Bayesian rule continues to outperform the plug-in rule
under the directionally differentiable utility function in larger samples.

We illustrate our methods using data from Angrist et al. (2006), who study the impact of receiv-
ing a randomly assigned voucher—allowing students to attend private high schools—on educational
attainment seven years later. We hypothetically treat the marginal distribution of covariates (age
and sex) in the observed sample as that of the target population, and compute both the plug-in
rule and the Bayesian rule. The two rules yield identical allocations under a continuously differen-
tiable utility function but differ under the maximin-type directionally differentiable utility function
mentioned above.

1.1. Related literature. This study builds on the literature on the statistical treatment assign-
ment problems in econometrics, where the pioneering works include Manski (2004) and Dehejia
(2005). Within this expanding literature, our main contribution is to provide a decision-theoretic
optimality result under capacity constraints on available treatments. Previous studies have estab-
lished the decision-theoretic optimality of treatment rules in several settings including: (i) point-
identified smooth (semi-)parametric models under local asymptotics (Hirano and Porter, 2009;
Masten, 2023), (ii) partially-identified smooth (semi-)parametric models under local asymptotics
(Christensen et al., 2025; Kido, 2023; Xu, 2024), (iii) point-identified models with finite samples
(Stoye, 2009; Stoye, 2012; Tetenov, 2012; Guggenberger et al., 2024; Kitagawa et al., 2024; Chen
and Guggenberger, 2025), (iv) partially-identified models with finite samples (Manski, 2007; Stoye,
2012; Yata, 2023; Ishihara and Kitagawa, 2024; Aradillas Fernández et al., 2024; Montiel Olea et al.,
2024). However, none of these studies consider the capacity constraints in the way we do. To the
best of our knowledge, this is the first study to establish an optimality result under such constraints
within the framework of Hirano and Porter (2009), extended to cover non-binary treatments—both
discrete and continuous.

Besides Hirano and Porter (2009), the most closely related paper is Christensen et al. (2025).
They extend Hirano and Porter (2009) to allow for partially identified parameters and (non-
randomized) discrete actions, and show the asymptotic optimality of the Bayesian rule. Our setting
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differs in that the action space is the set of couplings of FX and FT (see notation below) equipped
with the Wasserstein distance, which naturally allows for randomized assignment rules. This non-
standard action space requires nontrivial extensions to analyze the asymptotic properties of the
Bayesian rule, which we address by drawing on tools from optimal transport. In contrast to their
framework, we focus on point-identified parameters.2

There also exist studies that incorporate exogenously given constraints into the treatment assign-
ment problem. Bhattacharya and Dupas (2012) impose the capacity constraints in the way we do,
but focus on the estimation and inference of a nonparametric plug-in rule. Other papers adopting
the empirical welfare maximization approach allow for various types of constraints, including the
capacity constraints (Kitagawa and Tetenov, 2018; Athey and Wager, 2021; Mbakop and Tabord-
Meehan, 2021; Sun, 2024). Kitagawa and Tetenov (2018) show the optimality of their proposed rule
in terms of the welfare convergence rate, which measures how quickly the average welfare achieved
by the proposed rule converges to the maximum welfare under the true data generating process.

Some recent works utilize tools from optimal transport theory in the literature of treatment as-
signment problems. Kido (2022) and Adjaho and Christensen (2023) study the external validity of
treatment choices by measuring the difference in potential outcome distributions between the train-
ing and target populations using the Wasserstein distance. Hazard and Kitagawa (2025) formulate
a learning problem of optimal matching policies in a two-sided market as an empirical optimal
transport problem, and derive a welfare regret bound for their estimated policy.

Our work also relates to the growing field of statistical methods for optimal transport problems
(Chewi et al., 2024), as we study the local asymptotic properties of transport maps of an optimal
transport problem where the cost function is indexed by parameters that can be efficiently estimated.

1.2. Structure of the paper. The remainder of the paper is organized as follows. Section 2
formulates the planner’s problem and introduces the data generating process. Section 3 introduces
the decision theoretic framework and define the plug-in rule and the Bayesian rule. Then the
optimality results are stated. Section 4 provides a simulation study to evaluate the finite sample
performance of rules. Section 5 illustrates our methods using the data from Angrist et al. (2006).
Finally, Section 6 concludes. All of the proofs are relegated to Appendix.

1.3. Notation. A function f : Θ ⊂ Rk → R is (Hadamard) directionally differentiable at θ0 if there
is a continuous function ḟθ0 : Rk → R such that

lim
n→∞

∣∣∣∣f(θ0 + tnhn) − f(θ0)
tn

− ḟθ0(h)
∣∣∣∣ = 0

for all sequences {tn} ⊂ R+ and {hn} ⊂ Rk such that tn ↓ 0, hn → h ∈ Rk as n → ∞ and
θ0 + tnhn ∈ Θ for all n. It is worth noting that this requires ḟθ0 need to be continuous, but not to
be linear.
2Xu (2024) further extends the framework of Christensen et al. (2025) to continuous decision problems using an
expansion-based approach.
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Let P and Q be Borel probability measures on A and B, respectively. A joint distribution µ on
A × B is called a coupling of P and Q if its marginals are P and Q; that is, µ(A× B) = P (A) and
µ(A ×B) = Q(B) for any measurable sets A and B.

2. Setting

The setting of this paper closely follows that of Hirano and Porter (2009). We consider a social
planner who assigns a treatment T to individuals based on their observable covariates X. Let FX

denote the marginal distribution of X in the target population, with support X . We assume that
FX is known to the planner. The planner can fractionally (probabilistically) assign treatment T = t

to an individual with covariate X = x.
Let Y (t) denote potential outcomes under treatment T = t. In contrast to Hirano and Porter

(2009), we distinguish between the conditional potential outcome distribution in the target popula-
tion and in the training population. We denote the conditional distribution of Y (t) in the training
population as Ft(·|x, θ), where Ft(·|x, θ) belongs to families of distributions indexed by a parameter
θ ∈ Θ ⊂ Rk. The planner must learn θ from the available data from experimental or observational
studies.

2.1. The planner’s preferences. The planner’s utility for assigning treatment T = t to an indi-
vidual with covariate X = x depends on the conditional distribution Ft(·|x, θ) via a functional w.
For the shorthand notation, we write

w(θ, x, t) := w(Ft(·|x, θ)).

We consider two scenarios. First, w(θ, x, t) is fully differentiable in θ. Second, w(θ, x, t) is only
directionally differentiable in θ. Two examples corresponding to each scenario are given as follows.

Example 2.1. When the planner is interested in the (conditional) mean outcome, then a natural
choice of utility function is

w(θ, x, t) =
∫
ydFt(y|x, θ).

This choice is standard in the literature and appropriate especially when the target and training
populations are assumed to have the same conditional potential outcome distribution. ■

Example 2.2. When the conditional potential outcome distributions may differ slightly across the
target and training populations, the planner may wish to adopt a utility function that is robust to
distributional shifts. Following Adjaho and Christensen (2023), we formalize such a utility function.3

We first define an ε-neighborhood of Ft(·|x, θ) as

Nε :=
{
Gt(·|x) : d̃W (Gt(·|x), Ft(·|x, θ)) ≤ ε

}
,

3For alternative approaches to robust welfare, see Si et al. (2020), Kido (2022), and Qi et al. (2023).
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where ε > 0 is a measure of neighborhood size, and d̃W is the Wasserstein distance of order 1.4

Given λ ∈ [0, 1], the planner’s utility for assigning treatment T = t for individuals with covariate
X = x is then defined as

w(θ, x, t) = λ

∫
ydFt(y|x, θ) + (1 − λ) inf

Gt(·|x)∈Nε

∫
ydGt(y|x).

This formulation corresponds to maxmin preferences of an ambiguity-averse decision maker (Gilboa
and Schmeidler, 1989). In the second term, since the true target distributions are unknown, the
planner computes the conditional mean under the worst-case distribution within the neighborhood
of Ft(·|x, θ), treating it as a fixed reference prior on Y (t) given x.5

By Adjaho and Christensen (2023, Remark 2.2), this utility function can be rewritten as

w(θ, x, t) = λ

∫
ydFt(y|x, θ) + (1 − λ) max

{∫
ydFt(y|x, θ) − ε, yℓ(t)

}
, (2.1)

where yℓ(t) is the possible minimum values in the support of Y (t). From this expression, one finds
that (2.1) is only directionally differentiable, and the directional derivative of the second term of
(2.1) for direction h at θ is given by (1 − λ) times

(
∂
∂θ

∫
ydFt(y|x, θ)

)⊤
h if

∫
ydFt(y|x, θ) − ε > yℓ(t),

max
{(

∂
∂θ

∫
ydFt(y|x, θ)

)⊤
h, 0

}
if
∫
ydFt(y|x, θ) − ε = yℓ(t),

0 if
∫
ydFt(y|x, θ) − ε < yℓ(t).

We note that the non-linearity of this directional derivative corresponds to the failure of the full
differentiability of (2.1) at θ. ■

2.2. The planner’s problem as optimal transport. We consider a setting where the planner
faces the capacity constraints on the available treatments. To illustrate, consider a simple binary
treatment case, T ∈ T := {0, 1}, where a fraction p of the target population is to be treated. We
assume that the capacity constraint binds exactly. Let δ(x) denote the probability of assigning
treatment T = t to individuals with X = x. Then, under the capacity constraint, the planner’s
problem can be written as

max
δ∈F

∫
X

{w(θ, x, 1)δ(x) + w(θ, x, 0)(1 − δ(x))} dFX(x), (2.2)

We now show how to convert this constrained optimization problem into more tractable one.
Observe that the distribution of treatment assignments must be a Bernoulli distribution with the
success probability p. With this in mind, the planner’s problem can be seen as an optimal transport
4Formally,

d̃W (Ft(·|x), Gt(·|x, θ)) := inf
π∈Π(Ft,Gt)

∫
|y − ỹ| dπ(y, ỹ),

where Π(Ft, Gt) denotes all couplings of Ft and Gt. Note that d̃W differs from dW defined in (2.3).
5Several recent studies incorporate non-Bayesian preferences that arise naturally in settings with set-identifiable
parameters (Giacomini and Kitagawa, 2021; Aradillas Fernández et al., 2024; Christensen et al., 2025). Banerjee
et al. (2020) adopt maxmin preferences to study of the optimal experimental design problems.
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problem: the planner transports the mass of FX into FT , the Bernoulli distribution, in a way that
maximizes the social welfare.

Formally, let Ma be the set of all couplings of FX and FT . Let d be a distance function on X ×T ,
and define the Wasserstein distance of order 1 as

dW (µ, ν) := inf
γ∈Γ(µ,ν)

∫
d((x, t), (x′, t′))dγ((x, t), (x′, t′)), (2.3)

where Γ(µ, ν) is the set of couplings whose marginals are µ and ν. We focus on couplings that have
a finite first moment:

M :=
{
µ ∈ Ma :

∫
d((x0, t0), (x, t))dµ < +∞

}
,

for some arbitrary (x0, t0) ∈ X × T . Then (M, dW ) becomes a metric space, and dW is finite on M
(Villani, 2009, Theorem 6.9). Using this setup, the original constrained problem (2.2) is equivalent
to the following:

max
µ∈M

W (θ, µ), (2.4)

where

W (θ, µ) :=
∫

X ×T
w(θ, x, t)dµ =

∫
X

∫
T
w(θ, x, t)dµ(t|x)dFX(x).

Hence, the action space of the planner is the space of couplings (M, dW ).
There are three important remarks regarding this optimal transport formulation. First, the

capacity constraint is automatically satisfied by any coupling in M, making the problem effectively
unconstrained. Second, this reformulation is computationally attractive, as one can use an existing
software for optimal transport. Finally, this approach can easily accommodate non-binary treatment
settings. We assume that T follows a distribution FT , determined by the capacity constraints,
with support T . We remark that dµ(t|x) becomes a conditional probability measure when FT is
continuous.

2.3. The data generating process. When the true (finite-dimensional) parameter θ0 is known
to the planner, the optimal rules can be obtained by solving

max
µ∈M

W (θ0, µ).

However, since the planner does not know θ0 in practice, she must select a rule in a data-driven
manner. For this purpose, data Zn = (Z1, . . . , Zn), which are informative about θ (and hence
about Ft(·|x, θ)) are available from a training population. We assume that the data Zn are i.i.d.
with Zi ∼ Pθ on some space Z equipped with the Borel σ-algebra B(Z). We let Pn

θ denote the
joint probability measure of Zn. In Appendix F, we consider an extension in which the sampling
distribution of data may depend on (possibly infinite-dimensional) nuisance parameters, as in a
GMM model.
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Example 2.3. Angrist et al. (2006) study the medium-term effects of the PACES program in
Columbia.6 Specifically, they investigate the impact of receiving a randomly assigned voucher
(which allows attendance at private schools) on educational attainment seven years later, using the
administrative data.

In one of their main specifications, they consider the following linear model:

Yi = X⊤
i β + αTi + ui,

where Yi denotes test scores, Xi includes observable covariates (sex and age), Ti is an indicator
for the treatment status, and ui is an error term. However, not all individuals in the sample took
the exam. Because the voucher recipients were more likely to take the exam than non-recipients, a
selection issue arises. To address this, Angrist et al. (2006) construct a modified test score variable
by censoring the observed scores at a specific quantile of the test score distribution. Let Ri be an
indicator for exam registration and τ > 0 be the censoring threshold. Then the censored test score
is defined as

Yi(τ) := 1 {RiYi ≥ τ}Yi + 1 {RiYi < τ} τ.

Under the assumptions that (i) ui is normally distributed with mean zero, and (ii) any untested
student would have scored below the threshold τ had they taken the exam, the parameters can
be consistently estimated using a Tobit-type maximum likelihood estimator. In this context, the
parameter is θ = (α, β, σ), and the observed data is Zn = {(Ti, Xi, Yi(τ)) : i = 1, . . . , n}, where σ is
the standard deviation of the error term ui. ■

Following Hirano and Porter (2009) and among others, we use a local asymptotic framework
where we perturb the data-generating process around the true one. Let Θ be an open subset of Rk

and suppose that θ0 is the true parameter. Let θnh := θ0 + h/
√
n. We assume that the sequence

of experiments En = {Pn
θ : θ ∈ Θ} satisfies differentiability in quadratic mean (DQM) at θ0: there

exists a function s : Zn → Rk such that∫ [
dP 1/2

θ0+h(z) − dP 1/2
θ0

(z) − 1
2h

′s(z)dP 1/2
θ0

(z)
]2

= o(∥h∥2) as h → 0, (2.5)

where s is the score function associated with E1. Let I0 = EP n
θ0

[ss′].
The planner’s statistical treatment assignment rule (or just rule) µ : Zn → M maps realizations

of data into the coupling. Let
A0 := arg max

µ∈M
W (θ0, µ)

be the set of couplings that maximize the welfare at θ0. We define the class of sequences of rules by

D :=
{

{µn} : µn(Zn) h
⇝ Qθ0,h and

√
nPn

θnh
(µn(Zn) /∈ A0) → 0 ∀h ∈ Rk, ∀θ0 ∈ Θ

}
, (2.6)

where h
⇝ denotes convergence in distribution along Pn

θnh
with Zn ∼ Pn

θnh
for each n, and Qθ0,h is a

(possibly degenerate) probability measure on M. For technical reasons, we restrict our analysis to
6PACES stands for Programa de Ampliación de Cobertura de la Educación Secundaria.
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rules satisfying
√
nPn

θnh
(µn(Zn) /∈ A0) → 0, a condition also imposed by Christensen et al. (2025).

This condition ensures that the treatment rule maximizes the welfare at the true parameter θ0 with
high probability in a neighborhood of θ0, and that the probability of selecting a suboptimal coupling
(i.e., µn ̸∈ A0) vanishes sufficiently fast.

Since (M, dW ) is compact (and thus complete and separable) by Villani (2009, Remark 6.19), we
obtain the following asymptotic representation theorem by van der Vaart (1991, Theorem 3.1).

Proposition 2.4. Let {µn} ∈ D satisfy µn
h
⇝ Qθ0,h for all h ∈ Rk and θ0 ∈ Θ. Under Assumption

3.1 (i)–(iii) below, there exists µ∞ : Rk × [0, 1] → M such that for every h ∈ Rk, Lh (µ∞(∆, U)) =
Qθ0,h, Lh (∆) = N(h, I−1

0 ), and Lh(U) = Unif[0, 1] with U ⊥⊥ ∆.

This proposition states that any sequence {µn} in D can be matched by some treatment rule
µ∞ in a limit experiment where we observe a single draw ∆ from a shifted normal distribution
and an independent uniform random variable U . This representation is useful for analyzing the
asymptotic properties of rules, as the limit experiment is more analytically tractable than the
original experiments En.

Remark 2.5. Hirano and Porter (2009) study the optimality of treatment assignment rules after
conditioning on a fixed covariate value X = x. In our notation, this is equivalent to finding an
optimal conditional probability µ(·|x) for each x. Accordingly, they derive the asymptotic represen-
tation of µ(·|x) as a function of Zn by applying a version of the representation theorem (see their
Proposition 3.1). However, because it is difficult to accommodate the capacity constraints within
this framework, we instead apply the representation theorem to couplings µ ∈ M. Note that in our
setup, the map Zn 7→ µ(Zn) takes values in M, rather than the unit interval.

3. Optimal decisions

3.1. Decision theoretic framework and rules. We begin by introducing a decision theoretic
framework to evaluate the performance of a sequence of rules {µn} ∈ D. For each parameter value
θ, let

W ∗
M(θ) := max

µ′∈M
W (θ, µ′)

denote the maximum attainable welfare, and let ẇθ0(x, t;h) denote the directional derivative of
w(θ, x, t) at θ0 in direction h.

In the literature on locally asymptotically optimal treatment rules, decision rules are typically
evaluated by integrating the local risk over perturbations of the parameter. One example of such a
criterion is

inf
{µn}∈D

∫
Rk

lim inf
n→∞

√
nR(µn, θnh)dh, (3.1)

where
R(µ, θ) := EP n

θ
[W ∗

M(θ) −W (θ, µ(Zn))] (3.2)
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is the welfare-regret risk associated with the decision rule Zn 7→ µ(Zn) ∈ M at θ. This average-
optimality criterion is similar in spirit to the one employed by Christensen et al. (2025), whereas
Hirano and Porter (2009) and Xu (2024) consider a related formulation in which the integration
over h is weighted by a prior density.

A major difficulty with the classical average-risk criterion is that∫
Rk

lim inf
n→∞

√
nR(µn, θnh)dh

may be infinite for every sequence {µn} ∈ D. This can occur because ẇθ0(x, t;h) may grow too
quickly for the integrand to be integrable.

To obtain an optimality notion that is always well-defined, we turn to the Gaussian limit exper-
iment. By Proposition 2.4, any {µn(Zn)} ∈ D is matched by some coupling µ∞(∆, U) in the limit
experiment. Motivated by this representation, we evaluate rules through their induced decisions in
the Gaussian shift experiment.

Definition 3.1. A sequence {µn} ∈ D is said to be optimal in the limit experiment if, for each
fixed h ∈ Rk, it converges in distribution along Pn

θnh
to a coupling µ∞ that solves

min
µ∈A0

L∞(µ,∆) (3.3)

for any realization of signal ∆ ∼ N(h, I−1
0 ), where the limiting loss is defined by

L∞(µ,∆) :=
∫ [

Ẇ ∗
M,0[h] −

∫
ẇθ0(x, t;h)dµ

]
dN(∆, I−1

0 )(h),

and Ẇ ∗
M,0(h) = maxµ∈M

∫
ẇθ0(x, t;h)dµ denotes the Hadamard directional derivative of W ∗

M at
θ0.7

The distribution N(∆, I−1
0 ) corresponds to the posterior distribution of the local parameter h

in the Gaussian shift experiment under a flat prior. Thus L∞(µ,∆) is interpreted as the limiting
posterior risk of choosing coupling µ upon observing signal ∆.

We next formalize the relationship between the classical average-risk criterion and optimality in
the limit experiment.

In Theorem 3.2 below, we show the following: If a sequence {µ∗
n} ∈ D is average optimal (i.e.,

attains the infimum of the average risk) if {µ∗
n} is matched by some coupling µ∗

∞ in the limit
experiment such that µ∗

∞ solves

min
µ∈A0

∫ ∫ [
Ẇ ∗

M,0[h] −
∫
ẇθ0(x, t;h)dµ

]
dN(h, I−1

0 )(∆)dh.

Because the integrand is nonnegative, we may exchange the order of integration. Doing so yields an
optimization problem that coincides exactly with the limit-experiment optimality condition (3.3).

This connection is standard in local asymptotic decision theory: Hirano and Porter (2009) use an
argument that minimizing posterior risk in the Gaussian limit experiment yields average optimality,
7The existence of the derivative Ẇ ∗

M,0(h) is formally shown in Lemma C.1.
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and the subsequent literature adopts arguments that are, in essence, solving the corresponding limit-
experiment problem. Our analysis demonstrates that this classical connection continues to hold even
in our non-standard action space—the space of couplings (M, dW ) arising from capacity constraints
and the optimal-transport formulation of the planner’s problem.

In contrast to the classical average-optimality criterion, the limit-experiment optimality criterion
is always well-defined, and characterizes exactly the condition that any average-optimal rule would
have to satisfy if the classical criterion were finite. Thus, even when the average risk is not well-
defined, optimality in the limit experiment provides a sharp and meaningful approximation to the
notion of average optimality.

3.2. A connection between the limit-experiment optimality and average optimality.
We first provide the formal statement of the theorem mentioned above. As in Clarke and Barron
(1990) and Christensen et al. (2025), we say that a family P is locally quadratic if for any θ0 ∈ Θ,
DKL(pθ ∥ pθ′) ≤ 2(θ−θ′)⊤I0(θ−θ′) holds for any θ and θ′ belonging to a neighborhood of θ0, where
DKL(pθ ∥ pθ′) is the Kullback-Leibler divergence with respect to a common dominating measure ν.
Also, we say P is sound if weak convergence of Pθ to Pθ′ is equivalent to the convergence of θ to θ′

for probability measures Pθ, Pθ′ and parameters θ, θ′ ∈ Θ.

Assumption 3.1. (i) Θ is open. (ii) P is DQM at any θ0. (iii) I0 is finite and nonsingular at any
θ0. (iv) P is locally quadratic. (v) P is sound.

The first three conditions are standard assumptions in local asymptotic frameworks. Conditions
(iv) and (v) ensure that Schwartz’s theorem—which originally establishes posterior consistency in a
space of density functions (see, for example, Ghosh and Ramamoorthi (2003) and Ghosal and van der
Vaart (2017))—can be applied in a parametrized setting, as in Clarke and Barron (1990). We impose
these assumptions to show that the Bayesian rule {µB

n } satisfies
√
nPn

θnh

(
µB

n (Zn) /∈ A0
)

→ 0. The
same conditions are also imposed by Christensen et al. (2025).

Assumption 3.2. X × T is compact in the product metric space where the distance function d is
equipped.

For example, this condition is satisfied if X is a compact metric space, and T is a finite discrete
space.

Assumption 3.3. (i) w(θ, x, t) is bounded continuous on Θ for any (x, t) ∈ X × T . (ii) w(θ, x, t)
is continuous on X × T uniformly over Θ.

Note that discrete covariates are compatible with condition (ii), since the metric d can be defined
to incorporate the discrete metric.
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Assumption 3.4. (i) w(θ, ·) is directionally differentiable (as a function on X × T ) at any θ ∈
Θ with derivative ẇθ.8 (ii) ẇθ0(x, t;h) is continuous on X × T for any h. (iii) ẇθ0(·;h) is
uniformly dominated by a function K(h) that grows at most subpolynomially of order p; i.e.,
max(x,t)∈X ×T |ẇθ0(x, t;h)| ≤ K(h) ≤ 1 + ∥h∥p.

Condition (i) imposes a uniform version of directional differentiability, rather than requiring it
only pointwise in (x, t). For condition (iii), a similar polynomial growth condition appears in the
study of Bayes estimators (van der Vaart, 1998, Section 10.3). Choosing p = 1 is sufficient for (2.1)
provided max(x,t)∈X ×T

∥∥∥ ∂
∂θ

∫
ydFt(y|x, θ0)

∥∥∥ < ∞. Condiion (ii) is not used in the next result, but
used in Theorem 3.5.

Assumption 3.5. (i) The prior (Lebesgue) density function π is positive, continuous, and bounded
on Θ. (ii)

∫
∥θ∥p dπ(θ) < ∞.

The order p used in condition (ii) must align with the order in Assumption 3.4 (iii). Condiion
(ii) is not used in the next result, but used in Theorem 3.5.

Theorem 3.2. Let {µn} ∈ D be any sequence of decision rules that is matched by µ∞ in the limit
experiment. Under Assumptions 3.1–3.5, {µn} ∈ D is average optimal if, for each fixed h ∈ Rk,
µ∞(∆) ∈ arg minµ∈A0 L∞(µ,∆) for any realization of the signal ∆ ∼ N(h, I−1

0 ), whenever the
average optimality is well-defined.

Proof. See Appendix A. □

This result shows that limit-experiment optimality characterizes classical average optimality
whenever the global average risk is finite.

In the following subsections, we investigate two canonical assignment rules to check whether they
are optimal in the limit experiment. The first rule is the plug-in rule {µP

n (Zn)}, defined for each n

by
µP

n (Zn) ∈ arg max
µ∈M

W (θ̂n, µ),

where θ̂n is a best regular estimator of θ0 such that
√
n(θ̂n − θnh) h

⇝ N(0, I−1
0 ) as n → ∞.

The maximum likelihood estimator or the Bayesian posterior mean estimator are typical examples
of best regular estimators. From the arguments of Hirano and Porter (2009), such a plug-in rule
is shown to be optimal in the limit experiment in binary treatments setup without constraints on
available treatments.

8That is, for any rn ↓ 0 and hn → h,

max
(x,t)∈X ×T

∣∣∣∣w(θ0 + rnhn, x, t) − w(θ0, x, t)
rn

− ẇθ0 (x, t; h)
∣∣∣∣→ 0.
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The second rule is the Bayesian rule {µB
n (Zn)}, defined for each n by

µB
n (Zn) ∈ arg max

µ∈M

∫
Θ
W (θ, µ)πn(θ|Zn)dθ,

where πn(θ|Zn) is the posterior density obtained from a strictly positive, continuous prior density π
on Θ. From the arguments of Christensen et al. (2025), such a Bayesian rule is shown to be optimal
in the limit experiments in discrete choice problems when (i) the model is partially identified, and
(ii) decision rules are not fractional.

3.3. Asymptotic behavior of the Bayesian rule. To state an optimality result for the Bayesian
rule {µB

n }, we additionally impose the following condition.

Assumption 3.6. There exists K such that for all (µ, ν) ∈ A0 × (M \ A0), W (θ0, µ) > K ≥
W (θ0, ν).

Note that W (θ0, µ) is constant over A0. This condition requires that the value of W (θ0, ·) is
uniformly separated between A0 and M \ A0. The requirement arises because M is infinite; it is
unnecessary when the action space is finite. To see an implication from this condition, note that
the correspondence A(θ) := arg maxµ∈MW (θ, µ) is upper hemicontinuous at θ0 by the theorem
of maximum of Berge. From this observation, one can show that Assumption 3.6 implies that for
sufficiently small ε > 0 we have that A(θ) = A0 for all θ ∈ Nε(θ0), which means that A(θ) is
invariant around the neighborhood of θ0.

It should be noted that the Bayesian rule {µB
n } may not be uniquely determined as our framework

allows for multiple maximizers of the objective function. This non-uniqueness complicates the
analysis since we cannot directly apply the argmax theorem, which is often used to study the
asymptotic behavior of general argmax-functionals.

To deal with this, we utilize a penalized version of the Bayesian rule. Let ν ∈ M be any fixed
reference measure and λ : M → R+ be a functional given by µ 7→ (dW (µ, ν))2, which will serve as
a penalty function of a maximization problem. For example, we can let ν be the product measure
of FX and FT . The functional λ has following properties:

Proposition 3.3. H is a nonnegative, continuous, strictly convex, and bounded functional on
(M, dW ).

Proof. See Appendix D. □

Then we define the penalized Bayesian rule by

µB
n,ε(z) := arg max

µ∈M

∫ √
nW (θ, µ)πn(θ|z)dθ − εH(µ),
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for ε > 0. Note that µB
n,ε becomes the unique maximizer of this penalized problem by the strict

convexity of H. We then obtain a useful result on the penalized rules {µB
n,ε} by following the

arguments of Nutz (2022).9

Proposition 3.4. Let Mopt(z) := arg maxµ∈M
∫ √

nW (θ, µ)πn(θ|z)dθ. For each z ∈ Zn, there
exists a unique µB

n (z) ∈ M such that (i) µB
n,ε(z) converges weakly to µB

n (z) as ε ↓ 0, (ii) µB
n (z) ∈

Mopt(z), and (iii) µB
n (z) = arg minµ∈Mopt(z)H(µ).

Proof. See Appendix E. □

Thus, we can construct a unique sequence {µB
n } by defining µB

n (z) as the minimizer of the penalty
function H over Mopt(z). All results on the Bayesian rule below are stated for the sequence {µB

n }
constructed in this way.

Theorem 3.5. Under Assumptions 3.1–3.6, {µB
n } is optimal in the limit experiment.

Proof. See Appendix B. □

Remark 3.6. Formally, the construction of {µB
n } depends on the choice of a prior distribution.

However, any prior satisfying Assumption 3.5 leads to the same conclusion.

Remark 3.7. {µB
n } remains optimal in the limit experiment if the directional differentiability in

Assumption 3.4 is strengthened to the full differentiability.

Remark 3.8. Christensen et al. (2025) impose a condition called no first-order ties, which requires
the uniqueness of the minimizer of the loss function in the limit experiment. This condition addresses
an indeterminacy: their treatment rule must be matched to one of the minimizers, but it is not
uniquely determined without this condition. By contrast, our construction of the rule {µB

n (Zn)}
allows us to avoid imposing this condition, since µB

n (z) is matched with µ∗
∞ in the limit experiment

where µ∗
∞ uniquely maximizes the penalty function H over the set of minimizers of L∞(µ,∆).10

3.4. Asymptotic behavior of the plug-in rule.

3.4.1. When w is directionally differentiable. From the definition of the limit-experiment optimality,
it is easy to see that any matched rule must solve

max
µ∈A0

∫ [∫
ẇθ0(x, t;h)dµ

]
dN(∆, I−1

0 )(h). (3.4)

9Nutz (2022) provides corresponding results by choosing H as the Kullback-Leibler (KL) information criterion between
µ ∈ M and any reference measure in M. KL is nonnegative and strictly convex in µ, but not continuous and bounded.
Here we impose stronger requirements for the penalty function H, which is needed to handle weak convergence of
functionals on M to study the asymptotic properties of rules. Accordingly, the mode of convergence of µB

n,ε(z) is
modified to weak convergence from convergence in total variation, see Nutz (2022, Theorem 5.5).
10Xu (2024) assumes uniqueness of the rule and therefore does not encounter the issue of non-uniqueness we addressed
here.
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One can show that {µP
n } ∈ D, which implies µP

n (Zn) ∈ A0 with probability approaching to one
along Pn

θnh
. Thus, for sufficiently large n, µP

n (Zn) equivalently solves

arg max
µ∈A0

√
nW (θ̂n, µ) = arg max

µ∈A0

∫ √
nw(θ̂n, x, t)dµ

= arg max
µ∈A0

√
n

[∫
w(θ̂n, x, t)dµ−

∫
w(θ0, x, t)dµ

]
where the second equality follows because the value of W (θ0, µ) is constant across µ ∈ A0. We
will see that the maximization problem that plug-in rules solve weakly converges to a different
maximization problem from (3.4). We actually claim that

max
µ∈A0

√
n

[∫
w(θ̂n, x, t)dµ−

∫
w(θ0, x, t)dµ

]
h
⇝ max

µ∈A0

∫
ẇθ0(x, t; ∆)dµ as n → ∞, (3.5)

where ∆ ∼ N(h, I−1
0 ).

To see this, let Bn(µ) :=
√
n
[∫
w(θ̂n, x, t)dµ−

∫
w(θ0, x, t)dµ

]
and B∞(µ) :=

∫
ẇθ0(x, t; ∆)dµ.

To simplify the argument, we impose a high-level condition that the process {Bn(µ) : µ ∈ A0} is
asymptotically tight.

By the best regularity of θ̂n, it follows that
√
n(θ̂− θ0) = I−1

0 Sn + oP n
θ0

(1) with Sn
0
⇝ N(0, I0) as

n → ∞. Combining Le Cam’s third lemma and the delta method for the directionally differentiable
functions (Fang and Santos, 2019, Theorem 2.1) yields

√
n

[∫
w(θ̂n, x, t)dµ−

∫
w(θ0, x, t)dµ

]
h
⇝
∫
ẇθ0(x, t; ∆)dµ as n → ∞,

where ∆ ∼ N(h, I−1
0 ). By the asymptotic tightness of {Bn(µ) : µ ∈ A0}, we can extend this result

to convergence in distribution of the process

Bn
h
⇝ B∞ as n → ∞ on ℓ∞(A0),

by van der Vaart and Wellner (1996, Theorem 1.5.4). Then applying the continuous mapping
theorem yields

max
µ∈A0

Bn(µ) h
⇝ max

µ∈A0
B∞(µ) as n → ∞,

which completes the argument.
It is evident that the solutions of RHS of (3.5) need not to solve (3.4). Thus the plug-in rules

might not be optimal in the limit experiment in general when w is directionally differentiable. In
the following, we provide a concrete example such that the plug-in rule becomes sub-optimal.

Example 3.9. Assume that the planner observes a single covariate X, say sex, with X = {xf , xm}.
Suppose FX(xf ) = FX(xm) = 1/2. Consider binary treatments setup where a fraction p = 1/2 of
the individuals to be treated. Assume that the conditional mean of the potential outcome is given
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by ∫
ydFt(y|x, θ) =

tθ
2 if x = xf ,

tθ if x = xm,
θ0 = 1.

Thus, the mean outcome is identical for xf and xm at true value θ0, but differs locally around θ0.
Further, let ε > 0 satisfy −ε < yℓ(0). In this case, the directional derivative of the maximin utility
function defined in (2.1) with λ = 0 is

ẇθ0(xf , 1;h) =

2h if h ≥ 0,

0 if h < 0,
ẇθ0(xf , 0;h) = 0,

and

ẇθ0(xm, 1;h) =

h if h ≥ 0,

0 if h < 0,
ẇθ0(xm, 0;h) = 0.

Note that M = A0 since θ0 = 1. For simplicity, assume I0 = 1.
Under this setup, we have∫ ∫

ẇθ0(x, t; s)dN(∆, I−1
0 )(s)dµ = 1

2h(∆)µ(1|xf ) + h(∆)p, h(∆) :=
[
∆ − ϕ(−∆)

1 − Φ(−∆)

]
,

where ϕ and Φ denote the pdf and cdf of the standard normal distribution, respectively. Let ∆h

satisfy h(∆h) = 0 (numerically, ∆h ≈ 0.506). Then note that h(∆) ≥ 0 if ∆ ≥ ∆h and h(∆) < 0 if
∆ < ∆h. Therefore, the optimal rule in (3.4) isµ(1|xf ) = 1, µ(1|xm) = 0 if ∆ ≥ ∆h,

µ(1|xf ) = 0, µ(1|xm) = 1 if ∆ < ∆h.

In contrast, we obtain∫
ẇθ0(x, t; ∆)dµ =

[
max{∆, 0} − max

{∆
2 , 0

}]
µ(1|xf ) + max{∆, 0}p.

Therefore, the optimal rule in (3.5) isµ(1|xf ) = 1, µ(1|xm) = 0 if ∆ ≥ 0,

µ(1|xf ) = 0, µ(1|xm) = 1 if ∆ < 0,

which is suboptimal for 0 ≤ ∆ ≤ ∆h. ■

Remark 3.10. To investigate the asymptotic properties of the plug-in rule formally, we need to
handle the non-uniqueness issue. This can be done by the penalization used for the construction of
the Bayesian rule.

3.4.2. When w is fully differentiable. If we strengthen the directional differentiability in Assumption
3.4 (i) to the continuous differentiability, then the plug-in rules attain the optimal value (3.4). To see
this, notice that the continuous differentiability of w(θ0, x, t) implies that the directional derivative



18 KEITA SUNADA AND KOHEI IZUMI

is linear; i.e., ẇθ0(x, t; s) = ẇθ0(x, t)⊤s for some ẇθ0(x, t) ∈ Rk. Then (3.4) becomes

max
µ∈A0

∫
ẇθ0(x, t)⊤∆dµ,

which is the same as (3.5)
This pattern is consistent with findings from the existing literature. As discussed earlier, the plug-

in rule is optimal in point-identified models when the utility function is continuously differentiable.
In contrast, Christensen et al. (2025) demonstrate that, in partially identified models, the Bayesian
rule is optimal when the utility function is only directionally differentiable, whereas the plug-in rule
fails to attain the optimal value for each signal ∆ in the limit experiment unless full differentiability
holds. In partially identified settings, directional differentiability is a natural and often unavoidable
assumption, as full differentiability typically does not hold.

4. Simulation

We conduct a simulation study to evaluate the performance of the Bayesian rule and the plug-in
rule under the following conditions: (i) the welfare function is either smooth or only directionally
differentiable, and (ii) the sample size is relatively small (n = 200) and large (n = 500).

We closely follows the data generating process described in Example 2.3. For the training popu-
lation, the latent variable is generated by

Y ∗
i = X⊤

i β + αTi + ui,

where Xi ∈ R2 denotes the observable covariates and Ti is the binary treatment that is randomly
assigned. The first coordinate of Xi, interpreted as age, follows a truncated normal distribution
with mean 4, standard deviation of 2, and is bounded on [1, 10]. The second coordinate, interpreted
as sex, is a binary variable assigned with equal probability. The observed outcome is

Yi = max{0, Y ∗
i }.

We set β0 = (−2,−3), α0 = 4, and ui ∼ N(0, σ2
0) with σ0 = 10. The observed data is an i.i.d.

sample Zn = {(Yi, Xi, Ti)}n
i=1. The parameters θ0 = (β0, α0, σ0) can be estimated by the maximum

likelihood using Zn.
In this Tobit model, the conditional mean of the potential outcomes in the training population

is given by

w(θ, x, t) = (x⊤β + αt) − (x⊤β + αt)Φ
(

−x⊤β − αt

σ

)
+ σϕ

(
−x⊤β − αt

σ

)
,

where Φ and ϕ denote the standard normal cdf and pdf, respectively. Following Examples 2.1 and
2.2, we specify the planner’s utility function as

wR(θ, x, t, ε, λ) = λw(θ, x, t) + (1 − λ) max {w(θ, x, t) − ε, 0} ,
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Figure 1. Welfare contrasts under smooth and directionally differentiable welfare at θ0

where λ ∈ [0, 1] and ε > 0. We note that wR is differentiable when λ = 1, but only directionally
differentiable otherwise. In what follows, we focus on the cases λ = 0, 1 and ε = 0.8.

Figure 1 plots the welfare contrasts wR(θ, x, 1, ε, λ) −wR(θ, x, 0, ε, λ) for both males and females
at θ0. Under λ = 0, kinks appear when w(θ, x, t) − ε < 0. For a given covariate x, the contrast is
zero if both w(θ, x, 1) < ε and w(θ, x, 0) < ε; that is, individuals with sufficiently low welfare are
regarded as deriving no benefit from treatment.

The upper panels of Figure 4 show the oracle (infeasible optimal) rule at θ0. The rule assigns
treatment to females younger than approximately 6.5 and to males younger than approximately 5.
Notably, this oracle rule remains unchanged across λ = 0 and λ = 1. It also remains the same at
θ0 + h/

√
n, for the range of local deviation parameters h specified below.

We assume that the true distribution of covariates X in the training population is known and that
the target population shares the same distribution. Specifically, we define FX as the joint distribu-
tion of (a) the truncated normal distribution for the age variable and (b) the binary distribution
for the sex variable. For computational purposes, we discretize FX into 99 bins, each corresponding
to a distinct combination of age and sex. Each bin is assigned a probability mass according to FX ,
representing the proportion of individuals falling into that bin.

Suppose that the planner has resources to allocate to 75% of the target population. Let

W (θ, µ) =
∫
wR(θ, x, t, ε, λ)dµ(x, t).

4.1. Finite-sample average optimality. We evaluate performance under a sequence of perturbed
DGPs:

θnh = θ0 + h/
√
n, for h ∈ H := {−2,−1.6, . . . , 2},

where h/
√
n is added to θ0 element-wisely. Our goal is to compare the finite-sample average risk∫

R(µQ
n , θnh)dh =

∫
EP n

θnh
[W ∗

M(θnh) −W (θnh, µn(Zn))] dh

for Q = P,B. The simulation proceeds as follows:

(1) For each h, draw J independent samples of data {Zn,j}J
j=1 from Pn

θnh
where Zn,j = {Zj

i }n
i=1.
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(2) For each j:
(a) Obtain the MLE estimates of parameter θ̂j

nh and Fisher information matrix Îj
nh.

(b) Compute the plug-in rule µP,j
nh by

µP,j
nh ∈ arg max

µ∈M
W (θ̂j

nh, µ).

(c) Draw L samples {θℓ}L
ℓ=1 from N(θ̂j

nh, (nÎ
j
nh)−1), which can be interpreted as the quasi-

posterior using the quasi-likelihoodN(θ̂j
nh, (nÎ

j
nh)−1) with the uniform prior (Kim, 2002;

Christensen et al., 2025). Then compute the Bayesian rule µB,j
nh by

µB,j
nh ∈ arg max

µ∈M

1
L

L∑
ℓ=1

W (θℓ, µ).

(3) Compute the oracle welfare W ∗
M(θnh) = maxµ∈MW (θnh, µ), and estimate R(µQ

n (Zn), θnh)
by

R(Q,h) := 1
J

J∑
j=1

[
W ∗

M(θnh) −W (θnh, µ
Q,j
nh )

]
for Q = P,B. Store R(Q,h) for each h.

(4) Taking the average of R(Q,h) over h gives an estimate of
∫
R(µQ

n , θnh)dh for Q = P,B.

We use POT, an open-source Python library developed by Flamary et al. (2021), to compute the
plug-in rule and the Bayesian rule.

4.2. Results. We study the cases of n = 200, 500, J = 2000, and L = 2000 for both λ = 0 and
λ = 1. We first report the estimated risks, followed by comparisons of the resulting treatment
allocations.

Figure 2 shows the results for n = 200. While our theory predicts the plug-in and Bayesian rules
are optimal under smooth welfare (λ = 1), the simulation shows that the Bayesian rule performs
better in small samples. We also observe that the Bayesian rule outperforms the plug-in rule under
directionally differentiable welfare (λ = 0).

Figure 3 shows the results for n = 500. The Bayesian rule still performs slightly better when
λ = 1, but the overall risk levels are substantially reduced, and the performance gap between the
two rules narrows. This indicates that both rules are approaching optimality as the sample size
increases from 200 to 500. When λ = 0, the Bayesian rule continues to outperform the plug-in rule,
which is consistent with our theoretical predictions: under the directionally differentiable welfare
the Bayesian rule is optimal, but the plug-in rule may not be. Notably, the Bayesian rule performs
particularly well when the values of h are negative. In these cases, the welfare contrasts become
smaller, making the assignment problem more challenging. This highlights the robustness of the
Bayesian rule to local perturbations that make treatment decisions harder.

To gain further insight into the behavior of the two rules, we visualize the average allocations,
J−1∑

j µ
Q,j
nh , for Q = P,E, under θ0, n = 200, and λ = 0. Figure 4 shows that the Bayesian
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Figure 2. Comparisons of estimated risks: n = 200 (left: smooth welfare, right:
directionally differentiable welfare)

Figure 3. Comparisons of estimated risks: n = 500 (left: smooth welfare, right:
directionally differentiable welfare)

rule deviates from the oracle rule only near the decision boundary, while the plug-in rule exhibits
substantial deviations even away from it. This relative stability of the Bayesian rule contributes to
a sizable risk reduction. A similar, albeit weaker, pattern is observed for n = 500.

Remark 4.1. Under the current simulation setup, when the total amount of resources is sufficiently
small, the kink points of the directionally differentiable welfare do not affect the assignment decision,
as the available resources are exhausted before the assignment rule encounters the kink points. In
such cases, the behavior of the two rules under directionally differentiable welfare resembles their
behavior under the smooth welfare. We set the resource level to 75% to allow interaction between
the decision boundary under the oracle rule and the kink points.
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Figure 4. Comparison of (average) treatment assignment under directionally dif-
ferentiable welfare

Note: The upper panels show the oracle rule, the middle show the Bayesian rule, and the lower show the
plug-in rule under θ0 and n = 200.
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Table 1. Maximum likelihood estimates for math scores

Variables voucher age gender const σ2

Estimates 2.06 -5.5 -0.72 102.77 104.31
Standard error 0.46 0.24 0.44 2.87 5.17

5. Empirical application

We illustrate our methods using data from Angrist et al. (2006) continued from Example 2.3.11

As outcome variables, Angrist et al. (2006) use the test scores in language and math. Since the
estimation results are similar between these two, we use math scores as the outcome variable for
illustration. We focus on the case where the observed test scores are censored at the tenth percentiles
of the test score distribution among test-takers (denoted by τ), in line with the original article, to
address selection issues. In addition to the test scores, we observe treatment status, as well as age
and sex as covariates. The sample includes 3,541 individuals overall, with 1,788 girls and 1,753 boys.
Ages range from 10 to 17 with mean 12.7 and standard deviation 1.3. The maximum likelihood
estimates are summarized in Table 1.

We then hypothetically treat the marginal distribution of the covariates in the observed sample
as that of the target population, and compute both the plug-in and the Bayesian rules as described
in the previous section. In this example, the planner’s utility function is given by:

wR(θ, x, t, ε, λ) = λw(θ, x, t) + (1 − λ) max {w(θ, x, t) − ε, τ} ,

where

w(θ, x, t) = (x⊤β + αt) + (τ − x⊤β − αt)Φ
(
τ − x⊤β − αt

σ

)
+ σϕ

(
τ − x⊤β − αt

σ

)
.

Note that this is slightly different from the utility function in the previous section as the outcome
variable is censored at τ ̸= 0. In what follows, we focus on ε = 3.5 and λ = 0, 1. We consider the
case where we can assign vouchers for 50% of the target population.

Figure 5 shows the allocations under smooth welfare (λ = 1). As Table 1 shows, age has a negative
effect on outcomes. Accordingly, the plug-in rule allocates vouchers to younger individuals. Since
the effect of sex is slightly negative, the plug-in rule prioritizes females over males, resulting in
the allocation where vouchers are fully allocated to females aged 10-12, while not fully allocated
to males at age 12 as the resource is exhausted due to the capacity constraints. In this setting,
the Bayesian rule yields exactly the same allocation, which is natural since both rules are optimal
under smooth welfare. This also aligns with the simulation result in the previous section: both
rules perform similarly when the sample size is large enough.

Next, Figure 6 shows the allocations under directionally differentiable welfare (λ = 0). For the
plug-in rule, the value of wR is censored by τ at age 13 for females and at 12 for males in this
setting. As in the previous case, vouchers are fully allocated to females aged 10–12 and males aged
11For the replication dataset of the original article, see Angrist et al. (2019).
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Figure 5. Voucher allocations under smooth welfare
Note: The upper panels show the plug-in rule, and the lower panels show the Bayesian rule. The color

intensity represents the density of each cell in FX , with darker shades indicating higher density.

10–11. However, the remaining vouchers are randomly assigned, as the value of wR is just equal to
τ for the rest. For the Bayesian rule, after integrating with respect to the posterior distribution,
the value of wR is censored at τ at age 13 for both females and males. This leads to allocation to
males at age 12 until the resource is exhausted, resulting in the same allocation as seen in Figure 5.
This illustrates that the plug-in and the Bayesian rules could generate different allocations under
λ = 0.

6. Conclusion

We studied the decision-theoretic optimality of treatment assignment rules under capacity con-
straints on available treatments. Since such constraints complicate the analysis of optimal rules,
we transformed the planner’s constrained maximization problem into the unconstrained one using
tools from optimal transport theory. This reformulation allows us to search for optimal rules in
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Figure 6. Voucher allocations under directionally differentiable welfare
Note: The upper panels show the plug-in rule, and the lower panels show the Bayesian rule. The color

intensity represents the density of each cell in FX , with darker shades indicating higher density.

terms of couplings that automatically satisfy the capacity constraints. We investigated two rules
previously studied in the literature—the plug-in rule and the Bayesian rule. Both are optimal in
the limit experiment when the planner’s utility function is continuously differentiable; however,
the plug-in rule may no longer be optimal when the planner’s utility function is only direction-
ally differentiable. A simulation study supports our theoretical predictions. We demonstrated our
methods with a voucher assignment problems for private secondary school attendance using data
from Angrist et al. (2006).

While we focused on posterior-risk minimization in the Gaussian limit experiment, which is
equivalent to the standard average optimality whenever the average risk is well-defined, asymptotic
minimax optimality is also a widely used benchmark in local asymptotics frameworks. Kido (2023)
provides an asymptotic minimax optimality result when the ATE is partially identified and there
are no constraints on available treatments. In that setting, the plug-in rule becomes optimal only
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when the oracle rule is (Hadamard) differentiable. Given that Hirano and Porter (2009) show the
minimax optimality of the plug-in rule under the full differentiability conditions, we conjecture that
the modes of differentiability of the planner’s utility function w plays a key role in the minimax
optimality of the plug-in rule in our setting.
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Appendix A. Proof of Theorem 3.2

In what follows, the expectation EP n
θnh

can be understood as the outer expectation when µn is
not measurable. Also, Ph denotes the joint law of ∆ ∼ N(h, I−1

0 ) and U ∼ Unif[0, 1] in the limit
experiment.

Let {µn} ∈ D be any sequence of decision rules that will be matched by µ∞ in the limit experi-
ment. We show the followings: (i)∫

lim inf
n→∞

√
nR(µn, θnh)dh ≥

∫ 1

0

∫
L∞(µ∞(∆, u),∆)d∆du,

(ii) ∫
lim sup

n→∞

√
nR(µn, θnh)dh ≤

∫ 1

0

∫
L∞(µ∞(∆, u),∆)d∆du,

and (iii) {µn} is average optimal if the matched rule µ∞ of µn satisfies µ∞(∆) ∈ arg minµ∈A0 L∞(µ,∆)
for every realization of ∆ ∼ N(h, I−1

0 ).
(i). For any h,

EP n
θnh

√
n [W ∗

M(θnh) −W (θnh, µn(Zn))] (A.1)

=
∫ √

n

(
max
µ∈M

∫
w(θnh, x, t)dµ− max

µ∈M

∫
w(θ0, x, t)dµ

)
dPn

θnh
(z)

+
∫ √

n

(
max
µ∈M

∫
w(θ0, x, t)dµ−

∫
w(θ0, x, t)dµn(z)

)
dPn

θnh
(z)

−
∫ √

n

(∫
w(θnh, x, t)dµn(z) −

∫
w(θ0, x, t)dµn(z)

)
dPn

θnh
(z).

For the first term of the RHS of (A.1),∫ √
n

(
max
µ∈M

∫
w(θnh, x, t)dµ− max

µ∈M

∫
w(θ0, x, t)dµ

)
dPn

θnh
(z)

=
√
n

(
max
µ∈M

∫
w(θnh, x, t)dµ− max

µ∈M

∫
w(θ0, x, t)dµ

)
→ Ẇ ∗

M,0[h],

where the convergence follows from Lemma C.1. For the second term of the RHS of (A.1), it is
clear that ∫ √

n

(
max
µ∈M

∫
w(θ0, x, t)dµ−

∫
w(θ0, x, t)dµn(z)

)
dPn

θnh
(z) ≥ 0.

For the third term of the RHS of (A.1),∫ √
n

(∫
w(θnh, x, t)dµn(z) −

∫
w(θ0, x, t)dµn(z)

)
dPn

θnh
(z)

=
∫ ∫

ẇθ0(x, t;h)dµn(z)dPn
θnh

(z)

+
∫ ∫ {√

n [w(θnh, x, t) − w(θ0, x, t)] − ẇθ0(x, t;h)
}

dµn(z)dPn
θnh

(z)
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where ẇθ0(x, t;h) is the directional derivative of w(θ, x, t) at θ0. By Assumption 3.4 (i),∣∣∣∣∫ ∫ {√
n [w(θnh, x, t) − w(θ0, x, t)] − ẇθ0(x, t;h)

}
dµn(z)dPn

θnh
(z)
∣∣∣∣

≤ max
(x,t)∈X ×T

∣∣√n [w(θnh, x, t) − w(θ0, x, t)] − ẇθ0(x, t;h)
∣∣ → 0.

Therefore,

lim inf
n→∞

EP n
θnh

√
n [W ∗

M(θnh) −W (θnh, µn(Zn))]

≥ Ẇ ∗
M,0[h] − lim sup

n→∞

∫ ∫
ẇθ0(x, t;h)dµn(z)dPn

θnh
(z)

≡ Ẇ ∗
M,0[h] − lim sup

n→∞

∫
φ(µn(z))dPn

θnh
(z)

≥ Ẇ ∗
M,0[h] − E(∆,U)∼Ph

φ(µ∞(∆, U))

from the portmanteau theorem in metric spaces since the map φ : µ 7→
∫
ẇθ0(x, t;h)dµ is bounded

continuous on M. Thus, it follows that∫
lim inf
n→∞

EP n
θnh

√
n [W ∗

M(θnh) −W (θnh, µn(Zn))] dh

≥
∫

EPh

[
Ẇ ∗

M,0[h] − φ(µ∞)
]

dh

=
∫ ∫ 1

0

∫
Rk

[
Ẇ ∗

M,0[h] −
∫
ẇθ0(x, t; s)dµ∞(∆, u)

]
dN(h, I−1

0 )(∆)dudh

=
∫ 1

0

∫
Rk

∫ [
Ẇ ∗

M,0[s] −
∫
ẇθ0(x, t; s)dµ∞(∆, u)

]
dN(∆, I−1

0 )(s)d∆du,

where the last equality follows by Tonelli’s theorem since the integrand is nonnegative. By the
definition of L∞, the last display is equal to∫ 1

0

∫
L∞(µ∞(∆, u),∆)d∆du.

It should be noted that L∞(µ∞(∆, u),∆) can depend on u only through µ∞.
(ii) The argument can be carried out analogously to (i). However, for the second term of the

RHS of (A.1),∫ √
n

(
max
µ∈M

∫
w(θ0, x, t)dµ−

∫
w(θ0, x, t)dµn(z)

)
dPn

θnh
(z)

=
∫

{µn∈A0}

√
n

(
max
µ∈M

∫
w(θ0, x, t)dµ−

∫
w(θ0, x, t)dµn(z)

)
dPn

θnh
(z)

+
∫

{µn /∈A0}

√
n

(
max
µ∈M

∫
w(θ0, x, t)dµ−

∫
w(θ0, x, t)dµn(z)

)
dPn

θnh
(z)

=
∫

{µn /∈A0}

√
n

(
max
µ∈M

∫
w(θ0, x, t)dµ−

∫
w(θ0, x, t)dµn(z)

)
dPn

θnh
(z),
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where the second equality follows from maxµ∈M
∫
w(θ0, x, t)dµ = maxµ∈A0

∫
w(θ0, x, t)dµ. Further,∫

{µn /∈A0}

√
n

(
max
µ∈M

∫
w(θ0, x, t)dµ−

∫
w(θ0, x, t)dµn(z)

)
dPn

θnh
(z)

≤
√
nPn

θnh
(µn /∈ A0) × 2 max

(x,t)∈X ×T
|w(θ0, x, t)| → 0,

as n → ∞ from the definition of {µn} ∈ D. Thus, applying the portmanteau theorem yields

lim sup
n→∞

EP n
θnh

√
n [W ∗

M(θnh) −W (θnh, µn(Zn))] ≤ Ẇ ∗
M,0[h] − EPh

[∫
ẇθ0(x, t;h)dµ∞

]
. (A.2)

Then we can conclude similarly as in (i).
(iii). Fix any sequence of rules {µ′

n} ∈ D, and let µ′
∞ be the matched rule of µ′

n. Combining (i)
and (ii) yields ∫

lim inf
n→∞

√
nR(µn, θnh)dh ≤

∫
lim sup

n→∞

√
nR(µn, θnh)dh

≤
∫ 1

0

∫
L∞(µ∞(∆, u),∆)d∆du

≤
∫ 1

0

∫
L∞(µ′

∞(∆, u),∆)d∆du

≤
∫

lim inf
n→∞

√
nR(µ′

n, θnh)dh,

which completes the proof.

Appendix B. Proof of Theorem 3.5

B.1. Preliminaries. Our proof of Theorem 3.5 proceeds as follows. Lemma B.2 shows that the
Bayesian rule {µB

n } is an element of D and optimal in the limit experiment. Lemmas B.3–B.7 are
used to establish Lemma B.2. Additional auxiliary lemmas are relegated to Appendix C.

The following is a known result and can be found at van der Vaart (1998, Theorem 10.8).

Proposition B.1. Suppose that model is DQM at θ0. Let Cn be the ball of radius Mn for a given,
arbitrary sequence Mn → ∞. Further, suppose

∫
∥θ∥p dπ(θ) < ∞. Then, for every measurable

function f that grows subpolynomially of order p,∫
f(h)1Cc

n
(h)π(θnh|Zn)dh = oP n

θ0
(1) as n → ∞.

B.2. Proof. Let (D, ∥·∥D) be the product metric space induced by (M, dW ) and ([0, 1]. |·|). Let
ℓ∞(D) := {f : D → R : sup(µ,ε)∈D |f(µ, ε)| < ∞}. Define

(µ, ε) 7→Qn(µ, ε; z) :=
∫ [∫ √

n (w(θnh, x, t) − w(θ0, x, t)) dµ
]
πn(θnh|z)dh− εH(µ),

(µ, ε) 7→Q∞(µ, ε; ∆) :=
∫ [∫

ẇθ0(x, t;h)dµ
]

dN(∆, I−1
0 )(h) − εH(µ).
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In the same manner as the definition of µB
n (Zn), we define µ∗

∞(∆) as the limit of µ∗
∞,ε(∆) where

µ∗
∞,ε(∆) := arg max

µ∈A0

∫ ∫
ẇθ0(x, t; s)dN(∆, I−1

0 )(s)dµ− εH(µ).

It is easy to see that µ∗
∞(∆) ∈ arg minµ∈A0 L∞(µ,∆).

Lemma B.2. The Bayesian rule {µB
n (Zn)} satisfies

√
nPn

θnh

(
µB

n (Zn) /∈ A0
)

→ 0 and (ii) µB
n

h
⇝ µ∗

∞

as n → ∞.

Proof. (i). We claim that for any θ0 ∈ Θ, there are n̄ and ε′
n(n̄) (which is at the order of nα+1 for

some α ≥ 1) such that for all n ≥ n̄,

Pn
θnh

(
µB

n (z) /∈ A0
)

≤ Pn
θnh

(
πn

(
N1/n(θ0)c|z

)
> 2ε′

n

)
,

where Nε(θ0) := {θ :∥θ − θ0∥ < ε} for ε > 0, and πn (A|z) :=
∫

A πn(θ|z)dθ.12 Then the conclusion
follows since Christensen et al. (2025, Lemmas 9–11) imply that

√
nPn

θnh

(
πn

(
N1/n(θ0)c|z

)
> 2ε′

n

)
→

0 as n → ∞.
It is sufficient to show that for any z,

πn

(
N1/n(θ0)c|z

)
≤ 2ε′

n =⇒ µB
n (z) ∈ A0. (B.1)

It is trivial if A0 = M, so suppose A0 ⊊ M. By Lemma B.3 below, there exists n̄ such that n ≥ n̄

implies
min
µ∈A0

∫
N1/n(θ0)

W (θ, µ)πn(θ|z)dθ > sup
ν ̸∈A0

∫
N1/n(θ0)

W (θ, ν)πn(θ|z)dθ

Then there exists α = α(n̄) ≥ 1 such that

min
µ∈A0

∫
N1/n(θ0)

W (θ, µ)πn(θ|z)dθ > sup
ν ̸∈A0

∫
N1/n(θ0)

W (θ, ν)πn(θ|z)dθ + 1
n̄α
,

which implies that for n ≥ n̄,

min
µ∈A0

∫
N1/n(θ0)

W (θ, µ)πn(θ|z)dθ > sup
ν ̸∈A0

∫
N1/n(θ0)

W (θ, ν)πn(θ|z)dθ + 1
nα
.

Thus, we have

min
µ∈A0

(∫
W (θ, µ)πn(θ|z)dθ

)
= min

µ∈A0

(∫
N1/n(θ0)

W (θ, µ)πn(θ|z)dθ +
∫

N1/n(θ0)c
W (θ, µ)πn(θ|z)dθ

)

≥ min
µ∈A0

∫
N1/n(θ0)

W (θ, µ)πn(θ|z)dθ + min
µ∈A0

∫
N1/n(θ0)c

W (θ, µ)πn(θ|z)dθ

≥ min
µ∈A0

∫
N1/n(θ0)

W (θ, µ)πn(θ|z)dθ − πn

(
N1/n(θ0)c|z

)
M,

12This statement is an adaptation of Christensen et al. (2025, Lemma 8). Their proof cannot directly apply to our
setting because their arguments could fail when the set of actions, M in our notation, is not finite.
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where supθ,µ |W (θ, µ)| ≤ M < ∞. Also,

sup
ν ̸∈A0

∫
W (θ, ν)πn(θ|z)dθ ≤ sup

ν ̸∈A0

∫
N1/n(θ0)

W (θ, ν)πn(θ|z)dθ + πn

(
N1/n(θ0)c|z

)
M.

For the promise for (B.1), we choose ε′
n > 0 that satisfies

(
nα+12M

)−1 ≤ 2ε′
n < (nα2M)−1, which

leads to
πn (Nε(θ0)c|z) < 1

nα2M .

Then it follows that

min
µ∈A0

∫
W (θ, µ)πn(θ|z)dθ − sup

ν ̸∈A0

∫
W (θ, ν)πn(θ|z)dθ

≥ min
µ∈A0

∫
N1/n(θ0)

W (θ, µ)πn(θ|z)dθ − sup
ν ̸∈A0

∫
N1/n(θ0)

W (θ, ν)πn(θ|z)dθ − 2πn

(
N1/n(θ0)c|z

)
M

≥ 1
nα

− 2πn

(
N1/n(θ0)c|z

)
M > 0,

which implies
min
µ∈A0

∫
W (θ, µ)πn(θ|z)dθ > sup

ν ̸∈A0

∫
W (θ, ν)πn(θ|z)dθ.

Thus we conclude µB
n (z) ∈ A0.

(ii). From the first statement, it follows that the asymptotic distribution of µB
n (Zn) has the

support only on A0. Hence, for sufficiently large n, µB
n equivalently solves

µB
n (z) ∈ arg max

µ∈A0
Qn(µ, 0; z).

By the definition of µB
n ,

Qn(µB
n (z), 0; z) = lim

ε↓0
max
µ∈A0

Qn(µ, ε; z).

Take any closed subset G of M. Note that this closedness is in terms of (M, dW ). By the Port-
manteau lemma, it is sufficient to show that

lim sup
n→∞

Pn
θnh

(
µB

n (z) ∈ G
)

≤ Ph (µ∗
∞(∆) ∈ G)

for the conclusion.
By Lemma B.5, for each n,{

µB
n (z) ∈ G

}
=
{

lim
ε↓0

max
µ∈A0∩G

Qn(µ, ε; z) = lim
ε↓0

max
µ∈A0

Qn(µ, ε; z)
}
.

By Lemmas B.6 and B.7, it follows that Qn
h
⇝ Q∞ in F as n → ∞, where

F =
{
f ∈ ℓ∞(D) : lim

ε↓0
max
µ∈A0

f(µ, ε) exists
}
.
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By Lemma C.3, the operator f 7→ limε↓0 maxµ∈S f(µ, ε) is continuous for any closed S ⊂ A0 at any
f ∈ F . Applying the continuous mapping theorem yields

lim
ε↓0

max
µ∈S

Qn(µ, ε; z) h
⇝ lim

ε↓0
max
µ∈S

Q∞(µ, ε; ∆) as n → ∞.

Then

lim sup
n→∞

Pn
θnh

(
µB

n (z) ∈ G
)

= lim sup
n→∞

Pn
θnh

(
lim
ε↓0

max
µ∈A0∩G

Qn(µ, ε; z) = lim
ε↓0

max
µ∈A0

Qn(µ, ε; z)
)

≤Ph

(
lim
ε↓0

max
µ∈A0∩G

Q∞(µ, ε; ∆) = lim
ε↓0

max
µ∈A0

Q∞(µ, ε; ∆)
)
,

where the inequality follows from the Portmanteau lemma. Since we can derive the equivalence of
the events

{µ∗
∞(∆) ∈ G} =

{
lim
ε↓0

max
µ∈A0∩G

Q∞(µ, ε; ∆) = lim
ε↓0

max
µ∈A0

Q∞(µ, ε; ∆)
}

in the same manner, applying the Portmanteau lemma again yields µB
n

h
⇝ µ∗

∞ as n → ∞. □

Lemma B.3. There exists n̄ > 0 such that for all n ≥ n̄,

min
µ∈A0

∫
N1/n(θ0)

W (θ, µ)πn(θ|z)dθ > sup
ν ̸∈A0

∫
N1/n(θ0)

W (θ, ν)πn(θ|z)dθ. (B.2)

Proof. Let gn(µ) :=
∫

N1/n(θ0)W (θ, µ)πn(θ)dθ and V1/n :=
∫

N1/n(θ0) πn(θ)dθ. First, we claim that
V −1

1/ngn(µ) converges to W (θ0, µ) uniformly over M as n → ∞; i.e., for all η > 0, there exists nη

such that for all µ ∈ M,
n ≥ nη =⇒

∣∣∣V −1
1/ngn(µ) −W (θ0, µ)

∣∣∣ < η.

To show this claim, we argue that (i) for each µ ∈ M, V −1
1/ngn(µ) converges to W (θ0, µ) in pointwise,

and (ii) {gn}n∈N is equicontinuous; i.e., for all η > 0 and all µ ∈ M, there exists δ(η,µ) > 0 such
that for all n ∈ N and all ν ∈ M,

dW (µ, ν) < δ(η,µ) =⇒ |gn(µ) − gn(ν)| < η.

Combining with the compactness of M, the uniform convergence follows from these two.
To see (i), note that∣∣∣V −1

1/ngn(µ) −W (θ0, µ)
∣∣∣ ≤ V −1

1/n

∫
N1/n(θ0)

|W (θ, µ) −W (θ0, µ)|πn(θ|z)dθ. (B.3)

Fix η > 0. Since the map θ 7→ W (θ, µ) is continuous at θ0, there exists δ > 0 such that

θ ∈ Nδ(θ0) =⇒ |W (θ, µ) −W (θ0, µ)| < η.

Then for all n with n−1 < δ, RHS of (B.3) is bounded above by η.
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To see (ii), fix η > 0 and µ ∈ M. First, note that gn(µ) can be written as

gn(µ) = Eµ[Ψn(x, t)], Ψn(x, t) :=
∫

N1/n(θ0)
w(θ, x, t)πn(θ|z)dθ,

where Eµ denotes the expectation with respect to the coupling µ. Note that (x, t) 7→ w(θ, x, t) is
uniformly continuous and bounded since X × T is compact. Then a function (x, t) 7→ wk(θ, x, t)
defined by

wk(θ, x, t) := inf
{
w(θ, x′, t′) + kd((x, t), (x′, t′)) : (x′, t′) ∈ X × T

}
is k-Lipschitz continuous, and converges uniformly to w(θ, x, t) from below as k → ∞ (see e.g.,
Heinonen (2001, Theorem 6.8)). Lemma B.4 below further extends that the convergence holds
uniformly over Θ; i.e., for all η > 0, there is a sufficiently large K = K(η) such that

sup
θ∈Θ

max
(x,t)∈X ×T

|w(θ, x, t) − wK(θ, x, t)| < η

3 .

Given this K, define
ΨK

n (x, t) :=
∫

N1/n(θ0)
wK(θ, x, t)πn(θ|z)dθ.

Then ΨK
n (x, t) is also Lipschitz continuous whose Lipschitz constant is less than or equal to K.

Therefore,

|gn(µ) − gn(ν)| ≤Eµ

∣∣∣Ψn(x, t) − ΨK
n (x, t)

∣∣∣+ ∣∣∣Eµ[ΨK
n (x, t)] − Eν [ΨK

n (x, t)]
∣∣∣+ Eν

∣∣∣ΨK
n (x, t) − Ψn(x, t)

∣∣∣
<

2
3ηV1/n +KdW (µ, ν) ≤ 2

3η +KdW (µ, ν),

where the second inequality follows from the Kantorovich-Rubinstein duality (Villani, 2009, Theo-
rem 5.10). Thus, we obtain

dW (µ, ν) < η

3K =⇒ |gn(µ) − gn(ν)| < η.

Therefore {gn}n∈N is an equicontinuous family.
Finally, we show (B.2). By Assumption 3.6, there exists η > 0 such that for all µ ∈ A0,

W (θ0, µ) > sup
ν ̸∈A0

W (θ0, ν) + η. (B.4)

By the uniform convergence shown above, there exists nη such that for all µ ∈ M,

n ≥ nη =⇒
∣∣∣V −1

1/ngn(µ) −W (θ0, µ)
∣∣∣ < η

3 .
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Then fix n ≥ nη, and let µn ∈ arg minµ∈A0 gn(µ). For any ν ̸∈ A0, we obtain

min
µ∈A0

gn(µ) = gn(µn)

> V1/n

[
W (θ0, µn) − η

3

]
> V1/n

[
W (θ0, ν) + η − η

3

]
> gn(ν) + η

3 ,

where the second inequality follows from (B.4). Thus we obtain

min
µ∈A0

gn(µ) ≥
{

sup
ν ̸∈A0

gn(ν)
}

+ η

3 .

Since η > 0 does not depend on ν ̸∈ A0, we conclude n ≥ nη implies minµ∈A0 gn(µ) > supν ̸∈A0 gn(ν).
□

Lemma B.4. For all η > 0, there is a sufficiently large K = K(η) such that

sup
θ∈Θ

max
(x,t)∈X ×T

|w(θ, x, t) − wK(θ, x, t)| < η.

Proof. To simplify the notation, let Y = X × T . Let D be the diameter of Y. Since y 7→ w(θ, y) is
continuous uniformly over Θ (Assumption 3.3 (ii)) and Y is compact (Assumption 3.2), we have

Ω(δ) := sup
θ∈Θ

sup
d(y,y′)<δ

∣∣w(θ, y) − w(θ, y′)
∣∣ → 0 as δ ↓ 0.

Fix any θ ∈ Θ and y ∈ Y. Then for all y′ ∈ Y,

w(θ, y′) ≥ w(θ, y) −
∣∣w(θ, y) − w(θ, y′)

∣∣ ≥ w(θ, y) − Ω(d(y, y′)),

where the last inequality follows from the definition of Ω. Adding kd(y, y′) to both sides and taking
the infimum with respect to y′ yields

wk(θ, y) ≥ w(θ, y) + inf
r∈[0,D]

{kr − Ω(r)} ,

which implies
w(θ, y) − wk(θ, y) ≤ sup

r∈[0,D]
ϕk(r), ϕk(r) := Ω(r) − kr.

By the definition of Ω, there exists δ > 0 such that Ω(δ) < η. Note that Ω is non-decreasing
function. Then if 0 ≤ r < δ, we have ϕk(r) ≤ Ω(δ) < η. If r ≥ δ, we have ϕk(r) ≤ Ω(D) − kδ. Thus
supr∈[0,D] ϕk(r) ≤ {Ω(δ),Ω(D) − kδ}. Hence, for sufficiently largeK, it follows supr∈[0,D] ϕK(r) < η.
This implies

sup
θ∈Θ

max
y∈Y

{w(θ, y) − wK(θ, y)} ≤ sup
r∈[0,D]

ϕk(r) < η.

Note that it always holds wk(θ, y) ≤ w(θ, y) for each k. Thus we conclude the proof. □
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Lemma B.5. For each n and each closed G ⊂ M, the following equivalence of the events holds:{
µB

n (z) ∈ G
}

=
{

lim
ε↓0

max
µ∈A0∩G

Qn(µ, ε; z) = lim
ε↓0

max
µ∈A0

Qn(µ, ε; z)
}
.

Proof. (⊂). Take any z ∈ Zn such that
{
µB

n (z) ∈ G
}

. Note that

lim
ε↓0

max
µ∈A0∩G

Qn(µ, ε; z) ≤ lim
ε↓0

max
µ∈A0

Qn(µ, ε; z)

is clear. Suppose by way of contradiction that

lim
ε↓0

max
µ∈A0∩G

Qn(µ, ε; z) < lim
ε↓0

max
µ∈A0

Qn(µ, ε; z).

Then, there is small enough ε1 > 0 such that

max
µ∈A0∩G

Qn(µ, ε1; z) < max
µ∈A0

Qn(µ, ε1; z).

We can take η > 0 such that

max
µ∈A0∩G

Qn(µ, ε1; z) + 2η < max
µ∈A0

Qn(µ, ε1; z)

Since maxµ∈A0 Qn(µ, ε; z) → maxµ∈A0 Qn(µ, 0; z) as ε ↓ 0 from Lemmas E.5 and E.6, there exists
small enough ε2 > 0 such that∣∣∣∣max

µ∈A0
Qn(µ, ε2; z) − max

µ∈A0
Qn(µ, 0; z)

∣∣∣∣ < η.

Also, because εH(µB
n ) → 0 as ε ↓ 0, there exists small enough ε3 > 0 such that ε3H(µB

n ) < η. Let
ε = min {ε1, ε2, ε3}. Then,

max
µ∈A0

Qn(µ, ε; z) < max
µ∈A0

Qn(µ, 0; z) + η

=
∫ ∫ √

n (w(θnh, x, t) − w(θ0, x, t)) dµB
n (z)dπ(θnh|z) + η

≤
∫ ∫ √

n (w(θnh, x, t) − w(θ0, x, t)) dµB
n (z)dπ(θnh|z) − εH(µB

n ) + εH(µB
n ) + η

≤ max
µ∈A0∩G

Qn(µ, ε; z) + εH(µB
n ) + η

< max
µ∈A0∩G

Qn(µ, ε; z) + 2η < max
µ∈A0

Qn(µ, ε; z),

which is a contradiction. Hence it holds limε↓0 maxµ∈A0∩G Qn(µ, ε; z) = limε↓0 maxµ∈A0 Qn(µ, ε; z).
(⊃). For the other direction, take any z ∈ Zn with

lim
ε↓0

max
µ∈A0∩G

Qn(µ, ε; z) = lim
ε↓0

max
µ∈A0

Qn(µ, ε; z).

Let εk ↓ 0 as k → ∞. Recall
µB

n,εk
(z) = arg max

µ∈A0
Qn(µ, εk; z).
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By Proposition 3.4, µB
n,εk

(z) converges to µB
n (z) weakly as k → ∞. Moreover, by Villani (2009,

Theorem 6.9), we know that weak convergence in M is equivalent to convergence in (M, dW ).
Hence, µB

n,εk
(z) → µB

n (z) in the Wasserstein distance dW .
First, we argue that for each K ∈ N there is k ≥ K such that µB

n,εk
(z) ∈ G. By way of

contradiction, assume that there is K such that for any k ≥ K, µB
n,εk

(z) /∈ G. Now, µB
n,εk

(z) /∈ G

implies that
max

µ∈A0∩G
Qn(µ, εk; z) < Qn(µB

n,εk
, εk; z).

Take any η > 0 such that

max
µ∈A0∩G

Qn(µ, εk; z) + η < Qn(µB
n,εk

, εk; z).

Because
lim

k→∞

(
max
µ∈A0

Qn(µ, εk; z) − max
µ∈(A0∩G)

Qn(µ, εk; z)
)

= 0,

there exists K ′ such that if k ≥ K ′ then∣∣∣∣∣max
µ∈A0

Qn(µ, εk; z) − max
µ∈(A0∩G)

Qn(µ, εk; z)
∣∣∣∣∣ = max

µ∈A0
Qn(µ, εk; z) − max

µ∈(A0∩G)
Qn(µ, εk; z) < η/2.

Therefore, for sufficiently large k, we have

max
µ∈A0∩G

Qn(µ, εk; z) + η < Qn(µB
n,εk

, εk; z) ≤ max
µ∈A0

Qn(µ, εk; z) < max
µ∈(A0∩G)

Qn(µ, εk; z) − η/2,

which leads to a contradiction. Therefore, for each K there is k ≥ K such that µB
n,εk

(z) ∈ G.
Now, create such a subsequence

{
µB

n,εkℓ
(z)
}

ℓ∈N
with µB

n,εkℓ
(z) ∈ G for each ℓ. Note that any

subsequence of convergent sequence in arbitrary metric space converges to the same limit as the
original sequence. Therefore, µB

n,εkℓ
(z) → µB

n (z) in dW as ℓ → ∞. Since G is closed, we conclude
that µB

n (z) ∈ G. □

Let

Qn(µ, ε; z) =
∫ (∫

ẇθ0(x, t;h)dµ
)
πn(θnh|z)dh− εH(µ),

Q̃n(µ, ε; z) =
∫ (∫

ẇθ0(x, t;h)dµ
)

dN(∆n(z), I−1
0 )(h) − εH(µ),

where ∆n(z) = 1√
n

∑n
i=1 I

−1
0 s(zi) ∈ Rk with the score function s at θ0 and ∆n

0
⇝ G ∼ N(0, I−1

0 ).
Define D ≡ M × [0, 1]. Let {Qn(µ, ε) : (µ, ε) ∈ D}, {Q̃n(µ, ε) : (µ, ε) ∈ D}, {Q∞(µ, ε) : (µ, ε) ∈ D}
be stochastic processes. Assume that they yield maps Qn : Zn → ℓ∞(D), Q̃n : Zn → ℓ∞(D), and
Q∞ : Rk → ℓ∞(D). We can do this since the sample paths are continuous by Lemma C.2.

Let
F =

{
f ∈ ℓ∞(D) : lim

ε↓0
max
µ∈A0

f(µ, ε) exists
}
,

where the sup-norm is equipped to F . Note that Qn(z), Q̃n(z), Q∞(∆) ∈ F for any z and ∆.



OPTIMAL TREATMENT ASSIGNMENT RULES UNDER CAPACITY CONSTRAINTS 37

Lemma B.6. Qn
h
⇝ Q∞ in F as n → ∞.

Proof. Note that Qn = Qn + oP n
θnh

(1) as a process in F as n → ∞ by Lemma B.7. Hence, it is

sufficient to show that Qn
h
⇝ Q∞ in F as n → ∞. Let CM ⊂ Rk be the closed ball of radius M

around 0. Define stochastic processes by

Qn,M (µ, ε; z) =
∫

CM

(∫
ẇθ0(x, t;h)dµ(x, t)

)
πn(θnh|z)dh− εH(µ),

Q̃n,M (µ, ε; z) =
∫

CM

(∫
ẇθ0(x, t;h)dµ(x, t)

)
dN(∆n(z), I−1

0 )(h) − εH(µ),

Q∞,M (µ, ε; ∆) =
∫

CM

(∫
ẇθ0(x, t;h)dµ(x, t)

)
dN(∆, I−1

0 )(h) − εH(µ).

First, we will show that Qn,M − Q̃n,M
h→ 0 in F as n → ∞ for any fixed M . Note that∥∥∥Qn,M (·;Zn) − Q̃n,M (·, Zn)

∥∥∥
F

≤ max
h∈CM

max
(x,t)∈X ×T

|ẇθ0(x, t;h)| ·
∥∥∥πn(θnh|Zn) −N(∆n(Zn), I−1

0 )
∥∥∥

TV

where ∥·∥TV is the total variation norm. Because CM is bounded and ẇθ0(x, t;h) is bounded for any
h, we know that maxh∈CM

max(x,t)∈X ×T |ẇθ0(x, t;h)| < ∞. From the Bernstein–von Mises theorem,∥∥∥πn(θnh|Zn) −N(∆n(Zn), I−1
0 )

∥∥∥
TV

0→ 0 as n → ∞.

From Le Cam’s first lemma, it also converges to 0 along Pn
θnh

. Therefore, Qn,M − Q̃n,M
h→ 0 in F

as n → ∞.
Next, we argue that Q̃n,M

h
⇝ QM in F as n → ∞ for any fixed M . Define ϕ : Rk → F by

ϕ(δ)(µ, ε) =
∫

CM

(∫
ẇθ0(x, t;h)dµ(x, t)

)
dN(δ, I−1

0 )(h) − εH(µ)

Since ϕ is continuous, and ∆n
h
⇝ ∆ ∼ N(h, I−1

0 ) as n → ∞ by Le Cam’s third lemma, the continuous
mapping theorem implies ϕ(∆n) h

⇝ ϕ(∆) as n → ∞. Thus Q̃n,M
h
⇝ QM in F as n → ∞.

Combining the above two findings, we obtain Qn,M
h
⇝ Q∞,M in F as n → ∞ from the Slutsky

theorem. We also have that Q∞,M −Q∞ = oP ∆
h

(1) as M → ∞ where P∆
h is the (marginal) law of

∆ ∼ N(h, I−1
0 ). Thus, there exists a sequence Mn → ∞ such that Qn,Mn

h
⇝ Q∞ in F as n → ∞.

Finally, it remains to show that Qn − Qn,Mn = oP n
θnh

(1) in F as n → ∞, which leads to the

conclusion, Qn
h
⇝ Q∞ in F as n → ∞. By Assumption 3.4 (iii),∣∣∣∣∣

∫
Rk\CMn

(∫
ẇθ0(x, t;h)dµ(x, t)

)
πn(θnh|z)dh

∣∣∣∣∣ ≤
∫
Rk\CMn

K(h)πn(θnh|z)dh.

Then applying Proposition B.1 yields that RHS is oP n
θ0

(1). Thus it is oP n
θnh

(1) as well. Hence it

follows that Qn(µ, ε;Zn) − Qn,Mn(µ, ε;Zn) h→ 0 for any (µ, ε) ∈ D. Then the continuity of sample
path implies Qn −Qn,Mn = oP n

θnh
(1) in F as desired. □
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Lemma B.7. Qn = Qn + oP n
θnh

(1) in F as n → ∞.

Proof. Notice that for every z ∈ Zn, sup(µ,ε)∈D |Qn(µ, ε; z) −Qn(µ, ε; z)| is bounded above by∫
max

(x,t)∈X ×T
|w̃n,0(x, t;h)|πn(θnh|z)dh,

where w̃n,0(x, t;h) :=
√
n (w(θnh, x, t) − w(θ0, x, t))− ẇθ0(x, t;h). Let CMn be a closed ball of radius

Mn around 0, where Mn is the divergent sequence specified in Lemma C.4. Then the previous
display is further bounded by

πn(θnh|z)(CMn) × max
h∈CMn

max
(x,t)∈X ×T

|w̃n,0(x, t;h)| +
∫

1Rk\CMn
(h) max

(x,t)∈X ×T
|w̃n,0(x, t;h)|πn(θnh|z)dh

(B.5)
The first term of (B.5) converges to zero as n → ∞ by Lemma C.4. For the second term of (B.5),
note that from Assumption 3.4 (i),

max
(x,t)∈X ×T

∣∣√n (w(θnh, x, t) − w(θ0, x, t))
∣∣ ≤ max

(x,t)∈X ×T
|ẇθ0(x, t;h)| + o(1),

From Assumption 3.4 (iii), max(x,t)∈X ×T |ẇθ0(x, t;h)| is bounded by K(h) that grows at subpoly-
nomially of order p. This implies that max(x,t)∈X ×T |w̃n,0(x, t;h)| is also dominated by a function
that grows subpolynomially of order p for sufficiently large n. Then applying Proposition B.1 yields
the conclusion. □

Appendix C. Auxiliary lemmas for Theorem 3.5

The following extends the result on Hadamard directional differentiability given by Römisch
(2004, Proposition 1). Compared to his setting, the objective map

∫
w(θ, x, t)dµ need not to be

linear in θ. By leveraging the uniform continuity from Assumptions 3.3 and 3.4, we obtain the
similar form of the directional derivative as his result.

Lemma C.1. For a closed set S ⊂ M, define the map W ∗
S : Θ → R by

W ∗
S(θ) = max

µ∈S

∫
w(θ, x, t)dµ.

Then W ∗
S is Hadamard directionally differentiable with derivative

Ẇ ∗
S,0[h] ≡ lim

ε↓0
sup

µ∈Sε(θ0)

∫
ẇθ0(x, t;h)dµ

where
Sε(θ) ≡

{
µ ∈ S :

∫
w(θ, x, t)dµ+ ε ≥ max

µ∈S

∫
w(θ, x, t)dµ

}
̸= ∅

for ε > 0 and θ ∈ Θ. Moreover, if S ⊂ A0 then Ẇ ∗
S,0[h] = maxµ∈S

∫
ẇθ0(x, t;h)dµ.

Proof. The second statement follows from the first statement and the fact that Sε(θ0) = S for any
ε > 0. Hereafter, we focus on the first statement.
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Fix any closed S ⊂ M and any θ0 ∈ Θ. Then, arg maxµ∈S W (θ0, µ) ̸= ∅ because w(θ0, ·)
is bounded continuous on X × T from Assumption 3.3 (Villani, 2009, Theorem 4.1). Let µ(θ0) ∈
arg maxµ∈S W (θ0, µ). Since arg maxµ∈S W (θ0, µ) ⊂ Sε(θ0) for any ε > 0, we can guarantee Sε(θ0) ̸=
∅. Also, because w(θ0, ·, ·) is bounded, maxµ∈S

∫
w(θ0, x, t)dµ < ∞.

Let rn ↓ 0, and hn → h. Define

σn = 1
rn

(W ∗
S(θ0 + rnhn) −W ∗

S(θ0))

and we want to show that σn → Ẇ ∗
S,0[h]. But, it is enough to show that for any subsequence

of {σn}, there exists a further subsequence that converges to Ẇ ∗
S,0[h]. Take any subsequence and

denote it by {σn} for simplicity.
Define the maps Tn : S → R and T : S → R by

Tn(µ) =
∫ 1
rn

(w(θ0 + rnhn, x, t) − w(θ0, x, t)) dµ,

T (µ) =
∫
ẇθ0(x, t;h)dµ.

First, to see that Tn → T uniformly, take any µ ∈ S. Note that

|Tn(µ) − T (µ)| ≤ max
(x,t)∈X ×T

∣∣∣∣ 1
rn

(w(θ0 + rnhn, x, t) − w(θ0, x, t)) − ẇθ0(x, t;h)
∣∣∣∣ .

We can make RHS arbitrary small as n → ∞ without depending on µ from Assumption 3.4 (i).
Hence, we conclude that Tn → T uniformly.

Thus, for each n there exists K1 such that for each k ≥ K1∣∣∣∣∫ 1
rnk

(w(θ0 + rnk
hnk

, x, t) − w(θ0, x, t)dµ) −
∫
ẇθ0(x, t;h)dµ

∣∣∣∣ < r2
n ∀µ ∈ S. (C.1)

Moreover, from Assumption 3.3 (i), there exists K2 such that for each k ≥ K2∣∣∣∣∫ w(θ0 + rnk
hnk

, x, t)dµ−
∫
w(θ0, x, t)dµ

∣∣∣∣ < r2
n/2 ∀µ ∈ S. (C.2)

Let k ≥ max{K1,K2}, and construct a further subsequence {σnk
}.

For each k, take any µnk
∈ Sr2

nrnk (θ0). Then, from µnk
∈ S and the definition of Sr2

nrnk (θ0),

1
rnk

(W ∗
S(θ0 + rnk

hnk
) −W ∗

S(θ0)) = 1
rnk

(
max
µ∈S

∫
w(θ0 + rnk

hnk
, x, t)dµ− max

µ∈S

∫
w(θ0, x, t)dµ

)
≥ 1
rnk

(∫
w(θ0 + rnk

hnk
, x, t)dµnk

− max
µ∈S

∫
w(θ0, x, t)dµ

)
≥ 1
rnk

(∫
w(θ0 + rnk

hnk
, x, t)dµnk

−
∫
w(θ0, x, t)dµnk

)
− r2

n.

From (C.1), we have
σnk

>

∫
ẇ0(x, t;h)dµnk

− 2r2
n.
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Therefore,
σnk

≥ sup
µ∈Sr2

nrnk (θ0)

∫
ẇ0(x, t;h)dµ− 2r2

n.

Since r2
n ↓ 0, it leads to

lim inf
k→∞

σnk
≥ lim

ε↓0
sup

µ∈Sε(θ0)

∫
ẇ0(x, t;h)dµ.

Also, take any µ′
nk

∈ Sr2
nrnk (θ0 + rnk

hnk
). Then,

1
rnk

(W ∗
S(θ0 + rnk

hnk
) −W ∗

S(θ0)) = 1
rnk

(
max
µ∈S

∫
w(θ0 + rnk

hnk
, x, t)dµ− max

µ∈S

∫
w(θ0, x, t)dµ

)
≤ 1
rnk

(∫
w(θ0 + rnk

hnk
, x, t)dµnk

−
∫
w(θ0, x, t)dµnk

)
+ r2

n.

From (C.1),
σnk

<

∫
ẇθ0(x, t;h)dµ′

nk
+ 2r2

n.

If we would have Sr2
nrnk (θ0 + rnk

hnk
) ⊂ Sr2

nrnk
+r2

n(θ0), then we obtain

σnk
≤ sup

{∫
ẇθ0(x, t;h)dµ : µ ∈ Sr2

nrnk
+r2

n(θ0)
}

+ 2r2
n,

which leads to
lim sup

k→∞
σnk

≤ lim
ε↓0

sup
µ∈Sε(θ0)

∫
ẇθ0(x, t;h)dµ,

thus σnk
→ Ẇ ∗

S,0[h]. Hence, it suffices to show Sr2
nrnk (θ0+rnk

hnk
) ⊂ Sr2

nrnk
+r2

n(θ0) for the conclusion.
Take any ν ∈ Sr2

nrnk (θ0 + rnk
hnk

), then∫
w(θ0 + rnk

hnk
)dν + r2

nrnk
≥ max

µ∈S

∫
w(θ0 + rnk

hnk
)dµ. (C.3)
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Let µ(θ0) ∈ arg maxµ∈S
∫
w(θ0, x, t)dµ, then∫

w(θ0, x, t)dν + r2
nrnk

+ r2
n

≥
∫
w(θ0, x, t)dν + r2

n + max
µ∈S

∫
w(θ0 + rnk

hnk
, x, t)dµ−

∫
w(θ0 + rnk

hnk
, x, t)dν ∵ (C.3)

≥
∫
w(θ0, x, t)dν + r2

n +
∫
w(θ0 + rnk

hnk
, x, t)dµ(θ0) −

∫
w(θ0 + rnk

hnk
, x, t)dν

=
∫
w(θ0, x, t)dν + r2

n

+
∫
w(θ0 + rnk

hnk
, x, t)dµ(θ0) −

∫
w(θ0, x, t)dµ(θ0) +

∫
w(θ0, x, t)dµ(θ0) −

∫
w(θ0 + rnk

hnk
, x, t)dν

=
∫
w(θ0, x, t)dµ(θ0) + r2

n

+
∫

(w(θ0, x, t) − w(θ0 + rnk
hnk

, x, t)) dν +
∫

(w(θ0 + rnk
hnk

, x, t) − w(θ0, x, t)) dµ(θ0)

≥
∫
w(θ0, x, t)dµ(θ0) + r2

n − r2
n/2 − r2

n/2 ∵ (C.2)

=
∫
w(θ0, x, t)dµ(θ0).

Thus, ν ∈ Sr2
nrnk

+r2
n(θ0). □

Lemma C.2. The sample paths of Qn, Q̃n, and Q∞ are continuous and bounded in M.

Proof. First, we will show that the sample path of

Qn(µ, ε; z) =
∫ (∫

ẇθ0(x, t;h)dµ
)
πn(θnh|z)dh− εH(µ)

is continuous. Note that, then, it is bounded because M is compact. Fix any z, and take any
{(µk, εk)}∞

k=1 ⊂ D that converges to (µ, ε). Since D is a metric space, overall convergence implies
elementwise convergence. Thus, µk → µ in the Wasserstein distance and εk → ε. We are done if∣∣∣∣∫ {∫ ẇθ0(x, t;h)dµk −

∫
ẇθ0(x, t;h)dµ

}
πn(θnh|z)dh− εkH(µk) + εH(µ)

∣∣∣∣ → 0,

as k → ∞.
By the triangle inequality, LHS is bounded above by∣∣∣∣∫ {∫ ẇθ0(x, t;h)dµk −

∫
ẇθ0(x, t;h)dµ

}
πn(θnh|z)dh

∣∣∣∣+ |εkH(µk) − εH(µ)| .

The second term converges to zero since H is continuous. For the first term, since µk → µ in the
Wasserstein distance implies µk ⇝ µ, we have∫ (∫

ẇθ0(x, t;h)dµk

)
πn(θnh|z)dh =

∫ (∫
ẇθ0(x, t;h)πn(θnh|z)dh

)
dµk

→
∫ (∫

ẇθ0(x, t;h)πn(θnh|z)dh
)

dµ,
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where the convergence holds if the map (x, t) 7→
∫
ẇθ0(x, t;h)πn(θnh|z)dh is continuous and bounded.

To see the continuity, let {(xk, tk)} be such that (xk, tk) → (x, t). Then∣∣∣∣∫ ẇθ0(x, t;h)πn(θnh|z)dh−
∫
ẇθ0(x, t;h)πn(θnh|z)dh

∣∣∣∣
≤
∫

|ẇθ0(x, t;h) − ẇθ0(x, t;h)|πn(θnh|z)dh → 0 as k → ∞,

where the convergence follows from the continuity of ẇθ0(x, t;h) in (x, t) and the dominated conver-
gence theorem. The boundedness of (x, t) 7→

∫
ẇθ0(x, t;h)πn(θnh|z)dh follows from the continuity

of ẇθ0(x, t;h) in (x, t) (Assumption 3.4 (ii)) and the compactness of X × T (Assumption 3.2).
Similar arguments can be applied to Q̃n and Q∞. □

Lemma C.3. For any S ⊂ A0. the operator M : F → R where M(f) := limε↓0 maxµ∈S f(µ, ε) is
continuous.

Proof. Let fk → f in F as k → ∞. Note that M(f) and M(fk) exist for each k by the definition
of F . Then

|M(f) −M(fk)| = lim
ε↓0

∣∣∣∣max
µ∈M

f(µ, ε) − max
µ∈M

fk(µ, ε)
∣∣∣∣

≤ lim
ε↓0

max
µ∈M

|f(µ, ε) − fk(µ, ε)|

≤ max
(µ,ε)∈D

|f(µ, ε) − fk(µ, ε)| → 0,

as k → ∞, where the equality follows because |·| is continuous, and the convergence follows because
fk → f in F as k → ∞. □

The next result is an adaptation of Christensen et al. (2025, Lemma 3), where we need a modi-
fication to allow max-operator within the expression.

Lemma C.4. There is a sequence {Mn} such that Mn ↑ ∞, Mn/
√
n → 0, and

sup
∥h∥≤2Mn

max
(x,t)∈X ×T

∣∣√n [w(θnh, x, t) − w(θ0, x, t)] − ẇθ0(x, t;h)
∣∣ → 0.

Proof. From Shapiro (1990, Lemmas 3.3 and 3.4) and Assumption 3.4 (i), we know that for any
compact S ⊂ Rk and ε > 0, there is N such that suph∈S gn(h) < ε for any n ≥ N where gn(h) =
max(x,t)∈X ×T |

√
n [w(θnh, x, t) − w(θ0, x, t)] − ẇθ0(x, t;h)|. Define

ψn = sup
∥h∥≤2 log(1+n)

gn(h).

We are done if ψn → 0 because log(1 + n) ↑ ∞ and n−1/2 log(n + 1) → 0. To show ψn → 0, it
is enough to show that for any subsequence ψn (abusing notation) there is a further subsequence
converging to 0. First, consider sup∥h∥≤2 log(1+1) gn(h). We know that there is N(1) such that
sup∥h∥≤2 log(1+1) gn(h) < 1/ log(1 + 1) for any n ≥ N(1). Second, for sup∥h∥≤2 log(1+2) gn(h), there
is N(2) such that sup∥h∥≤2 log(1+2) gn(h) < 1/ log(1 + 2) for any n ≥ N(2). Proceed with N(1) <
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N(2) < N(3) < · · · WLOG. Then, the map N : N → N satisfies i < j =⇒ N(i) < N(j).
Hence, ψN(n) is a subsequence of ψn. To show ψN(n) = sup∥h∥≤2 log(1+n) gN(n)(h) → 0, take any
ε > 0. Since 1/ log(1 + n) ↓ 0, there is n̄ such that 1/ log(1 + n) < ε for any n ≥ n̄. Therefore,
ψN(n) < 1/ log(1 + n) < ε for any n ≥ n̄. □

Appendix D. Proof of Proposition 3.3

By Villani (2009, Corollary 6.11), µ 7→ dW (µ, ν) is continuous on M.13 Convexity of µ 7→
dW (µ, ν) is shown below. Because the map µ 7→ dW (µ, ν) is convex and nonnegative and the map
R+ ∋ x 7→ x2 is increasing and strictly convex, the composite map µ 7→ (dW (µ, ν))2 is strictly
convex and nonnegative. Also, it is bounded by the compactness of M and the continuity.

To see the convexity of µ 7→ dW (µ, ν), fix any µ1, µ2 ∈ M and α ∈ (0, 1). To simplify the
notation, let Y = X × T . Let

γ∗
1 ∈ arg inf

γ∈Γ(µ1,ν)

∫
d(y, y′)γ(dy, dy′),

γ∗
2 ∈ arg inf

γ∈Γ(µ2,ν)

∫
d(y, y′)γ(dy, dy′).

First, we show that αγ∗
1 + (1 − α)γ∗

2 ∈ Γ(αµ1 + (1 − α)µ2, ν). Take any A,B ∈ Y. Then,

(αγ∗
1 + (1 − α)γ∗

2) (Y ×B) = αγ∗
1(Y ×B) + (1 − α)γ∗

2(Y ×B) = ν(B).

Also,

(αγ∗
1 + (1 − α)γ∗

2) (A× Y)

= αγ∗
1(A× Y) + (1 − α)γ∗

2(A× Y) = αµ1(A) + (1 − α)µ2(A) = (αµ1 + (1 − α)µ2) (A).

Hence,

r(αµ1 + (1 − α)µ2) ≤
∫
d(y, y′)d(αγ∗

1 + (1 − α)γ∗
2)

= α

∫
d(y, y′)dγ∗

1 + (1 − α)
∫
d(y, y′)dγ∗

2 = αr(µ1) + (1 − α)r(µ2).

Appendix E. Proof of Proposition 3.4

We provide a proof under a general framework using continuous and bounded cost function
c : X × T → R. Define

Cε := inf
µ∈M

∫
cdµ+ εH(µ). (εEOT)

C0 := inf
µ∈M

∫
cdµ. (OT).

Let Mopt = arg minµ∈M
∫
cdµ. It should be noted that (M, dW ) is a metric space which is convex

and compact.

13More explicitly, if µk converges to µ weakly in M, then dW (µk, ν) → dW (µ, ν).
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Our proof of Proposition 3.4 proceeds as follows. Lemma E.4 gives the conclusion under the
assumption limε→0 Cε = C0. Lemmas E.1–E.3 are needed to prove Lemma E.4. Finally, Lemmas
E.5 and E.6 show limε→0 Cε = C0.

Lemma E.1. Let µn ∈ M. Suppose that limnH (µn) =: a ∈ R exists and that

lim sup
m,n→∞

H (µm,n) ≥ a

for µm,n := (µm + µn) /2. Then {µn} converges weakly.

Proof. Let D < ∞ be the diameter of X ×T . By Villani (2009, Theorem 6.15), dW (µ, ν) is bounded
by D ∥µ− ν∥TV. By following the same arguments of Nutz (2022, Lemma 1.9), we obtain

lim
m,n→∞

∥µm − µn∥TV = 0.

Thus it follows that limm,n→∞ dW (µm, µn) = 0. □

The next result is an adaptation of Nutz (2022, Theorem 1.10). We use weak convergence as the
mode of convergence, whereas the original proof uses convergence in total variation.

Lemma E.2. Let Q ⊂ M be a convex and closed subset. There exists a unique µ∗ ∈ Q such that

H(µ∗) = inf
µ∈Q

H(µ) ∈ [0,∞).

Proof. Let µn ∈ Q be such that H(µn) → infµ′∈QH(µ′). By convexity of Q, we have µm,n :=
(µm + µn) /2 ∈ Q and hence H(µm,n) ≥ infµ∈QH(µ) for all m,n. Lemma E.1 shows that {µn}
converges weakly to some µ∗. By the continuity of µ 7→ H(µ), µ∗ is a minimizer of infµ′∈QH(µ′).
Uniqueness follows from the strict convexity of H. □

The next result is an adaptation of Nutz (2022, Proposition 1.17).

Lemma E.3. Consider a decreasing sequence of sets Qn ⊂ M that are convex and closed, and let
Q := ∩nQn. Let µn = arg minµ∈Qn H(µ) be the minimizer of Qn. Then

µn → µ∗ weakly, and H(µn) → H(µ∗),

where µ∗ = arg minµ′∈QH(µ′).

Proof. Note that the inclusion Qn ⊃ Qn+1 ⊃ Q implies that H(µn) is increasing and H(µn) ≤
infµ′∈QH(µ′). Since any increasing and bounded-above sequence is convergent, we have limH(µn) ≤
infµ′∈QH(µ′) < ∞. For m ≥ n, we have µm,n := (µm + µn) /2 ∈ Qn by convexity. Then
H(µm,n) ≥ H(µn). Thus lim supm,n→∞H(µm,n) ≥ limH(µn). Since limH(µn) < ∞, Lemma
E.1 implies that µn converges weakly to some limit µ. By the continuity of H on M,

H(µ) = lim
n
H(µn) ≤ inf

µ′∈Q
H(µ′).
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Thus we obtain µ ∈ arg minµ′∈QH(µ′). By the uniqueness of the minimizer shown in Lemma E.2,
we have µ = µ∗; i.e., µn converges weakly to µ∗. □

The next result is an adaptation of Nutz (2022, Theorem 5.5).

Lemma E.4. Suppose that limε→0 Cε = C0. Let µε be the optimizer of (εEOT). Then,

µε → µ∗ weakly as ε ↓ 0, and H(µε) → H(µ∗),

where µ∗ = arg minµ∈Mopt H(µ).

Proof. The additive form of (εEOT) and the optimality of the couplings imply that

H(µε) ≤ H(µε′) and
∫
cdµε ≥

∫
cdµε′ for ε ≥ ε′ > 0.

Denote Q := Mopt and

Qε :=
{
µ ∈ M :

∫
cdµ ≤

∫
cdµε

}
.

Note that Qε is a closed convex set, and µε = arg minµ∈Qε H(µ).14 Then
∫
cdµε ≥

∫
cdµε′ implies

that Qε ⊃ Qε′ for ε ≥ ε′. Next, we claim that Q = ∩εQε. It is easy to see Q ⊂ ∩εQε. For the other
direction, take any µ ∈ ∩εQε. Then we have µ ∈ Q because∫

cdµ ≤
∫
cdµε ≤ Cε → C0.

Then applying Lemma E.3 completes the proof. □

Thus, it remains to show that limε→0 Cε = C0. The next result is an adaptation of Nutz (2022,
Lemma 5.2).

Lemma E.5. Suppose that given η > 0, there exists µη ∈ M with
∫
cdµη ≤ C0 +η and H(µη) < ∞.

Then limε→0 Cε = C0.

Proof. Given η > 0, we have

Cε ≤
∫
cdµη + εH(µη) ≤ C0 + η + εH(µη).

Thus limε→0 Cε ≤ C0 + η. Since η > 0 is arbitrary, we are done. □

The next result is an adaptation of Nutz (2022, Lemma 5.4).

Lemma E.6. Let c be continuous and bounded. Then limε→0 Cε = C0.

Proof. Let η > 0 and µ ∈ M an optimal transport for (OT). By Nutz (2022, Lemma 5.3), there
exists µη ∈ M such that ∣∣∣∣∫ cdµη −

∫
cdµ

∣∣∣∣ ≤ η.

14Suppose, by contradiction, that there exists µ ∈ Qε such that H(µ) < H(µε). Then∫
cdµ + εH(µ) <

∫
cdµε + εH(µε),

which contradicts with the optimality of µε.
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Note that H(µη) < ∞. Then applying Lemma E.5 yields the conclusion. □

Then by Lemma E.4, the conclusion of Proposition 3.4 follows.

Appendix F. Optimality in semiparametric models

We generalize the setup presented in the main texts to allow more flexible sampling distributions
for observable data. Our setup here basically follows Christensen et al. (2025, Section 5). Assume
that data Zn = (Z1, . . . , Zn) are i.i.d. and Zi follows the distribution Pθ,η indexed by θ ∈ Θ ⊂ Rk

and η ∈ H, where η is a possibly infinite-dimensional nuisance parameter. For instance, in a GMM
model, H is the set of marginal distributions η of Zi where for each η ∈ H, there exists θ ∈ Θ such
that η satisfies the moment restriction

∫
g(θ, z)dη = 0, given some known vector function g.

It is said that P = {Pθ,η : θ ∈ Θ, η ∈ H} has the least favorable submodels at (θ, η) if there exist
an open neighborhood Θθ,η of θ and a map Θθ,η ∋ t 7→ ηt ∈ H such that the parametric submodel
{Pt,ηt : t ∈ Θθ,η} has the density function pt,ηt with respect to a common dominating measure ν
and satisfies the DQM condition∫ [√

pθ+h,ηθ
− √

pθ,ηθ
− 1

2h
⊤ℓ̇θ,ηpθ,ηθ

]2
dν = o(∥h∥2), as h → 0,

where ℓ̇θ,η : Zn → Rk is the efficient score function for θ. Thus, the parametric submodel {Pt,ηt :
t ∈ Θθ,η} achieves the semiparametric efficiency bound by the inverse of Iθ,η :=

∫
ℓ̇θ,η ℓ̇

⊤
θ,ηdPθ,ηθ

. For
each (θ, η), the least favorable submodels need not to be unique. Picking one of them gives no loss
of generality because they all behave in the same manner asymptotically.

Following the parametric model, we assume that the planner’s utility function w only depends
on θ, and not on the nuisance parameter η.

F.1. Decision theoretic framework and rules. Fix (θ0, η0) ∈ Θ×H. Consider a least favorable
submodel {Pβ(t) : t ∈ Θθ0,η0}, where β(t) = (t, ηt). Under the reparametrization t = θ0 + h/

√
n =

θnh, Zn follows the distribution Pn
β(θnh). We denote h

⇝ by the weak convergence along the path

Pn
β(θnh),

h→ by the convergence in probability along Pn
β(θnh), and 0→ by the convergence in probability

along Pn
θ0,η0

.
We define the class of the sequences of rules by

D :=
{

{µn} : µn(Zn) h
⇝ Qθ0,h and

√
nPn

β(θnh)(µn ∈ A0) → 0 as n → ∞ ∀h ∈ Rk, ∀θ0 ∈ Θ
}
.

The optimality criterion in this semiparametric model is based on the least favorable submodels.
The risk associated with the map Zn 7→ µ(Zn) ∈ M at (θ, η) ∈ Θ × H is given by

R(µ, (θ, η)) := EP n
θ,η

[W ∗
M(θ) −W (θ, µ(Zn))] ,

where the expectation is taken with respect to the sampling distribution Pn
θ,η of Zn. Let π be

any prior density function on Θ that is continuous and positive at θ0. Then, a sequence of rules
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{µ∗
n} ∈ D is said to be (semiparametrically) average optimal if {µ∗

n} attains the infimum of the
asymptotic risk function:

inf
{µn}∈D

lim inf
n→∞

∫ √
nR(µn, β(θnh))π(θnh)dh. (F.1)

F.2. Quasi-Bayesian implementation of the Bayesian rules. We replace a posterior function
specified in the parametric setup by a quasi-posterior. Let θ̂n be the (semiparametrically) efficient
estimator of θ, and Î−1

n be a consistent estimator of the asymptotic covariance I−1
θ,η . We combine

the limited-information quasi-likelihood N(θ̂n, (nÎn)−1) for θ and a prior π on Θ to obtain the
quasi-posterior

πn(θ|Zn) ∝ exp
(

−1
2(θ − θ̂n)⊤(nÎn)(θ − θ̂n)

)
π(θ).

We compute the Bayesian rules using πn(θ|Zn); i.e.,

µB
n (z) ∈ Mopt(z) := arg max

µ∈M

∫ √
nW (θ, µ)dπn(θ|z).

Following the parametric model, we construct a unique {µB
n (z)} where µB

n (z) minimizes the penalty
function H over Mopt(z).

F.3. Optimality results. As an analog for Assumption 3.1 in the parametric models, we impose
the following assumptions.

Assumption F.1. (i) Θ is open.
(ii) P has a least favorable submodel at each (θ0, η0) ∈ Θ × H.
(iii) Iθ0,η0 is finite and nonsingular at each (θ0, η0) ∈ Θ × H.
(iv) For each (θ0, η0) ∈ Θ × H and each h ∈ Rk, (iv-a)

√
nPn

β(θnh)(∥θ̂n − θ0∥ > ε) → 0 for each
ε > 0 as n → ∞, and (iv-b) there exists c ∈ (0, 1) such that

√
nPn

β(θnh)(c ≤ λ̂min, λ̂max ≤ c−1) → 0
as n → ∞,

(v) For each (θ0, η0) ∈ Θ × H, (v-a)
√
n(θ̂n − θ0) h

⇝ Z with Z ∼ N(h, I−1
θ0,η0

) for all h ∈ Rk as
n → ∞, and (v-b) În

0→ Iθ0,η0 as n → ∞.

Theorem F.1. Under Assumptions F.1 and 3.2–3.6, {µB
n } ∈ D is average optimal.

Proof. Once we fix the parameter (θ0, η0) ∈ Θ × H, the least favorable submodel {Pβ(t) : t ∈ Θθ0,η0}
becomes a parametric model. Hence, only slight modifications from the proof of Theorem 3.5 are
needed. Specifically, Lemmas ?? and B.5 follow in the same manner. For Lemma B.2, we need a
modification to show

√
nPn

β(θnh)(µ
B
n (Zn) ̸∈ A0) → 0 for all h ∈ Rk, which is given in Lemma F.2

below. For Lemmas B.6 and B.7, we need to use the quasi-posterior counterparts of the Bernstein-
von Mises theorem given by Christensen et al. (2025, Lemma 5) and Proposition B.1 given by Xu
(2024, Lemma A.5). Auxiliary lemmas given in Appendix C do not need modifications. □

Lemma F.2. The Bayesian rule {µB
n (Zn)} satisfies

√
nPn

β(θnh)(µ
B
n (Zn) ̸∈ A0) → 0 as n → ∞.
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Proof. From Lemma B.2 (i), for any θ0 ∈ Θ, there are n̄ and ε′
n(n̄) (which is at the order of nα+1

for some α ≥ 1) such that for all n ≥ n̄,

Pn
θnh

(
µB

n (z) /∈ A0
)

≤ Pn
θnh

(
πn

(
N1/n(θ0)c|z

)
> 2ε′

n

)
Under Assumption F.1 (iii) and (iv), Christensen et al. (2025, Lemma 12) implies that

√
nPβ(θnh)

(
πn

(
N1/n(θ0)c

)
> 2ε′

n

)
→ 0

as n → ∞. □
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